摘要Single phase orthorhombic perovskite Ho1−xLaxMnO3 (x=0.1, 0.15) compounds are successfully synthesized by using a sol−gel method. We find that the orthorhombic perovskite structure of HoMoO3 compound can be stabilized by partial substitution of smaller Ho ion by larger La ion. The magnetic properties of orthorhombic perovskite Ho1−xLaxMnO3 are investigated for the first time. For the x=0.15 sample, a ferromagnetic−like transition is found around T = 130 K, which should correspond to partial FM ordering of Mn3+ magnetic moments. The partial substitution of Ho by La causes a switch of magnetic state of Mn3+ moments from AFM order to FM-like order. Our study indicates that La doping has significant influence on the magnetic structures of Mn ions.
Abstract:Single phase orthorhombic perovskite Ho1−xLaxMnO3 (x=0.1, 0.15) compounds are successfully synthesized by using a sol−gel method. We find that the orthorhombic perovskite structure of HoMoO3 compound can be stabilized by partial substitution of smaller Ho ion by larger La ion. The magnetic properties of orthorhombic perovskite Ho1−xLaxMnO3 are investigated for the first time. For the x=0.15 sample, a ferromagnetic−like transition is found around T = 130 K, which should correspond to partial FM ordering of Mn3+ magnetic moments. The partial substitution of Ho by La causes a switch of magnetic state of Mn3+ moments from AFM order to FM-like order. Our study indicates that La doping has significant influence on the magnetic structures of Mn ions.
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
引用本文:
WANG Hong-Tao;ZHOU Tong;HONG Bo;TAO Qian;XU Zhu-An**
. Magnetic Properties of Orthorhombic Perovskite Ho1−xLaxMnO3[J]. 中国物理快报, 2011, 28(2): 27501-027501.
WANG Hong-Tao, ZHOU Tong, HONG Bo, TAO Qian, XU Zhu-An**
. Magnetic Properties of Orthorhombic Perovskite Ho1−xLaxMnO3. Chin. Phys. Lett., 2011, 28(2): 27501-027501.
[1] Schmid H 1994 Ferroelectrics 162 317
[2] Hur N, Park S, Sharma P A, Ahn J S, Guha S and Cheong S W 2004 Nature 429 392
[3] Hur N, Park S, Sharma P A, Guha S and Cheong S W 2004 Phys. Rev. Lett. 93 107207
[4] Kusters R M, Singleton J, Keen D A, McGreevy R and Hayes W 1989 Physica B 155 362
[5] von Helmolt R, Wecker J, Holzapfel B, Schultz L and Samwer K 1993 Phys. Rev. Lett. 71 2331
[6] Chahara K, Ohno T, Kasai M and Kozono Y 1993 Appl. Phys. Lett. 63 1990
[7] McCormack M, Jin S, Tiefel T H, Fleming R M, Phillips J M and Ramesh R 1994 Appl. Phys. Lett. 64 3045
[8] Maignan A, Simon C, Caignaert V and Raveau B 1995 Solid State Commun. 96 623
[9] Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G and Tokura Y 1995 Phys. Rev. B 51 14103
[10] Zhou J –S, Goodenough J B, Gallardo- Amores J M, Moran E, Alario-Franco M A and Caudillo R 2006 Phys. Rev. B 74 014422
[11] Alonso J A, Martinez- Lope M J, Casais M T and Fernández-Díaz M T 2000 Inorg. Chem. 39 917
[12] Harikrishnan S, Rossler S, Kumar C M N, Bhat H L, Rossler U K, Wirth S, Steglich F and Elizabeth S 2009 J. Phys.: Condens. Matter 21 096002
[13] Töpfer J and Goodenough J B 1997 J. Solid State Chem. 130 117
[14] Munoz A, Casáis M T, Alonso J A, Martínez-Lope M J, Martínez J L and Fernández-Díaz M T 2001 Inorg. Chem. 40 1020
[15] Dyakonov V, Bukhanko F N, Kamenev V I, Zubov E, Baran S, Jaworska-Gołab T, Szytuła A, Wawrzyńska E, Penc B, Duraj R, Stüsser N, Arciszewska M, Dobrowolski W, Dyakonov K, Pientosa J, Manus O, Nabialek A, Aleshkevych P, Puzniak R, Wisniewski A, Zuberek R and Szymczak H 2006 Phys. Rev. B 74 024418
[16] Dyakonov V, Bukhanko F N, Kamenev V I, Zubov E E, Arciszewska M, Dobrowolski W, Mikhaylov V, Puzniak R, Wisniewski A, Piotrowski K, Varyukhin V, Szymczak H, Szytuła A, Duraj R, Stüsser N, Arulraj A, Baran S, Penc B and Jaworska-Gołab T 2008 Phys. Rev. B 77 214428