摘要Using the coherence theory of non-stationary fields and the characterization of stochastic electromagnetic pulsed beams, the analytical expression for the spectral degree of polarization of stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beams in turbulent atmosphere is derived and is used to study the polarization properties of stochastic electromagnetic GSMP beams propagating through turbulent atmosphere. The results of numerical calculation are given to illustrate the dependence of spectral degree of polarization on the pulse frequency, refraction index structure constant and spatial correlation length. It is shown that, compared with free-space case, in turbulent atmosphere propagation there are two positions at which the on-axis spectral degree of polarization P is equal to zero. The position change depends on the pulse frequency, refraction index structure constant and spatial correlation length.
Abstract:Using the coherence theory of non-stationary fields and the characterization of stochastic electromagnetic pulsed beams, the analytical expression for the spectral degree of polarization of stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beams in turbulent atmosphere is derived and is used to study the polarization properties of stochastic electromagnetic GSMP beams propagating through turbulent atmosphere. The results of numerical calculation are given to illustrate the dependence of spectral degree of polarization on the pulse frequency, refraction index structure constant and spatial correlation length. It is shown that, compared with free-space case, in turbulent atmosphere propagation there are two positions at which the on-axis spectral degree of polarization P is equal to zero. The position change depends on the pulse frequency, refraction index structure constant and spatial correlation length.
[1] Wolf E 2003 Phys. Lett. A 312 263
[2] Wolf E 2003 Opt. Lett. 28 1078
[3] Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University)
[4] Shirai T and Wolf E 2004 J. Opt. Soc. Am. A 21 1907
[5] Korotkova O and Wolf E 2005 Opt. Commun. 246 35
[6] Roychowdhury H, Agrawal G P and Wolf E 2006 J. Opt. Soc. Am. A 23 940
[7] Chen Z Y and Pu J X 2007 J. Opt. Soc. Am. A 24 2043
[8] Ji X L, Zhang E T and Lü B D 2007 Opt. Commun. 275 292
[9] Wolf E 2007 Opt. Lett. 32 3400
[10] Korotkova O, Visser T D and Wolf E 2008 Opt. Commun. 281 515
[11] Du X Y and Zhao D M 2008 J. Opt. Soc. Am. A 25 773
[12] Cai Y J, Korotkova O, Eyyuboglu H T and Baykal Y 2008 Opt Express 16 15834
[13] Shu J H, Chen Z Y and Pu J X 2009 Chin. Phys. Lett. 26 024207
[14] Pan L Z, Sun M L, Ding C L, Zhao Z G and Lü B D 2009 Opt. Express 17 7310
[15] Tong Z S and Korotkova O 2010 Opt. Lett. 35 175
[16] Agrawal G P 2007 Nonlinear Fiber Optics (Amsterdam: Elsevier)
[17] Pääkköen P, Turunen J, Vahimaa P, Friberg A T and Wyrowski F 2002 Opt. Commun. 204 53
[18] Lajunen H, Turunen J, Vahimaa P, Tervo J and Wyrowski F 2005 Opt. Commun. 255 12
[19] Lajunen H, Vahimaa P and Tervo J 2005 J. Opt. Soc. Am. A 22 1536
[20] Saastamoinen K, Turunen J, Vahimaa P and Friberg A T 2009 Phys. Rev. A 80 053804
[21] Surakka M, Friberg A T, Turunen J and Vahimaa P 2010 Opt. Lett. 35 157
[22] Ding C L, Pan L Z and Lü B D 2009 New J. Phys. 11 083001
[23] Ding C L, Pan L Z and Lü B D 2009 J. Opt. Soc. Am. B 26 1728
[24] Ding C L, Zhao Z G, Pan L Z and Lü B D 2010 Opt. Commun. 283 4470
[25] Huang W H, Ponomarenko S A, Cada M and Agrawal G P 2007 J. Opt. Soc. Am. A 24 3063
[26] James D F V 1994 J. Opt. Soc. Am. A 11 1641
[27] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University)
[28] Yura H T 1972 Appl. Opt. 11 1399
[29] Korotkova O 2008 Opt. Commun. 281 2342
[30] Korotkova O, Cai Y J and Watson E 2009 Appl. Phys. B: Lasers Opt. 94 681
[31] Yao M, Cai Y J, Korotkova O, Lin Q and Wang Z J 2010 Opt. Express 18 22503