QCT Calculations of Reactions of F+LiH→LiF+H and F+LiD→LiF+D: Product Polarization and Isotope Effects
WANG Tao1, YUE Xian-Fang2
1School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 2Department of Physics and Information Engineering, Jining University, Jining 273155
QCT Calculations of Reactions of F+LiH→LiF+H and F+LiD→LiF+D: Product Polarization and Isotope Effects
WANG Tao1, YUE Xian-Fang2
1School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 2Department of Physics and Information Engineering, Jining University, Jining 273155
摘要Using the quasi-classical trajectory (QCT) method, the product polarization at the collision energy of 46 kcal/mol is investigated for the reactions of F+LiH (v=0, j=0)→LiF+H and F+LiD (v=0, j=0)→LiF+D on the 2A' ground state potential energy surface (PES)[J. Chem. Phys. 106(1997)1013). The distribution of P(θr), which represents the K and J' correlation, the dihedral angle distribution of K−K'-J'P(φr), the angular distribution P(θr,φr) and the four PDDCSs[(2π/σ)(dσ00/dωt), (2π/σ)(dσ20/dωt), (2π/σ)(dσ22+/dωt), (2π/σ)(dσ21−/dωt)] are presented and discussed. In addition, isotope effects are investigated. The results indicate that at the collision energy of 46 kcal/mol, with isotopic mass substitution, the orientation degree of LiF perpendicular to the scattering degree becomes stronger while the polarization degree of LiF perpendicular to K keeps almost changeless. In addition, the angular distribution of LiF strongly prefers forward scattering.
Abstract:Using the quasi-classical trajectory (QCT) method, the product polarization at the collision energy of 46 kcal/mol is investigated for the reactions of F+LiH (v=0, j=0)→LiF+H and F+LiD (v=0, j=0)→LiF+D on the 2A' ground state potential energy surface (PES)[J. Chem. Phys. 106(1997)1013). The distribution of P(θr), which represents the K and J' correlation, the dihedral angle distribution of K−K'-J'P(φr), the angular distribution P(θr,φr) and the four PDDCSs[(2π/σ)(dσ00/dωt), (2π/σ)(dσ20/dωt), (2π/σ)(dσ22+/dωt), (2π/σ)(dσ21−/dωt)] are presented and discussed. In addition, isotope effects are investigated. The results indicate that at the collision energy of 46 kcal/mol, with isotopic mass substitution, the orientation degree of LiF perpendicular to the scattering degree becomes stronger while the polarization degree of LiF perpendicular to K keeps almost changeless. In addition, the angular distribution of LiF strongly prefers forward scattering.
WANG Tao;YUE Xian-Fang
. QCT Calculations of Reactions of F+LiH→LiF+H and F+LiD→LiF+D: Product Polarization and Isotope Effects[J]. 中国物理快报, 2011, 28(2): 23101-023101.
WANG Tao, YUE Xian-Fang
. QCT Calculations of Reactions of F+LiH→LiF+H and F+LiD→LiF+D: Product Polarization and Isotope Effects. Chin. Phys. Lett., 2011, 28(2): 23101-023101.
[1] Becker C H, Casavecchia P, Tiedemann P W, Valentini J J and Lee Y T 1980 J. Chem. Phys. 73 2833
[2] Loesch H J, Stenzel S and Wüstenbecker B 1991 J. Chem. Phys. 95 3841
[3] Loesch H J and Stienkemeier F 1993 J. Chem. Phys. 99 9598
[4] Loesch H J and Stienkemeier F 1993 J. Chem. Phys. 98 9570
[5] Parker G A, Laganà A, Crocchianti S and Pack R T 1995 J. Chem. Phys. 102 1238
[6] Aguado A, Paniagua M, Lara M and Roncero O 1997 J. Chem. Phys. 106 1013
[7] Aguado A, Paniagua M, Lara M and Roncero O 1997 J. Chem. Phys. 107 10085
[8] Lara M, Aguado A, Paniagua M and Roncero O 1998 J. Chem. Phys. 109 9391
[9] Laganà A, Bolloni A, Grocchianti S and Parker G A 2000 J. Phys. Chem. 324 466
[10] Baer M, Last I and Loesch H J 1994 J. Chem. Phys. 101 9648
[11] Zhu W, Wang D and Zhang J Z H 1997 Theor. Chem. Acc. 96 31
[12] Lara M, Aguado A, Paniagua M and Roncero O 2000 J. Chem. Phys. 113 1781
[13] Aoiz F J, Martínez M T, Menéndez M, Sáez Rábanos V and Verdasco E 1999 Chem. Phys. Lett. 299 25
[14] Aoiz F J, Verdasco E, Sáez Rábanos V, Loesch H J, Menendez M and Stienkemeier F 2000 Phys. Chem. Chem. Phys. 2 541
[15] Aoiz F J, Martínez M T and Sáez Rábanos V 2001 J. Chem. Phys. 114 8880
[16] Yuan M H and Zhao G J 2010 Int. J. Quantum Chem. 110 1842
[17] Liu X G, Kong H, Xu W W, Liang J J, Zong F J and Zhang Q G 2009 J. Mol. Struct.: Theochem. 908 117
[18] Kong H, Liu X G, Xu W W and Zhang Q G 2009 Chin. Phys. Lett. 26 053102
[19] Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339
[20] Zhao J, Xu Y and Meng Q T 2009 J. Phys. B: At. Mol. Opt. Phys. 42 165006
[21] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[22] Li W L, Wang M S, Yang C L, Liu W W, Sun C and Ren T Q 2007 Chem. Phys. 337 93
[23] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[24] Aguado A, Suárez C and Paniagua M 1995 Chem. Phys. 201 107
[25] Aguado A and Paniagua M 1992 J. Chem. Phys. 96 1265
[26] Chen M M L and Schaefer H F 1980 J. Chem. Phys. 72 4376
[27] Varandas A J C 1988 Adv. Chem. Phys. 74 255
[28] Wang M L, Han K L and He G Z 1998 J. Chem. Phys 109 5446
[29] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[30] Chen M D, Wang M L, Han K L and Ding S L 1999 Chem. Phys. Lett. 301 303
[31] Chen M D, Han K and Lou N Q 2003 J. Chem. Phys. 118 4463
[32] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[33] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[34] Zhang X and Han K L2006 Inter. Quant. Chem. 106 1815
[35] Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[36] Lin S Y, Han K L and Zhang J Z H 2000 Chem. Phys. Lett. 324 122
[37] Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964