摘要We present two designs for a waveguide Ge-quantum-well electro-absorption modulator. In our designs, the strip SOI waveguides are butt-coupled and evanescent-coupled to the modulator, respectively. The proposed Ge-quantum-well electro-absorption modulator is based on quantum-confined Stark effect (QCSE), having a 3-dB bandwidth above 50 GHz, as well as a low switching power (around 60 fJ/bit at 1435 nm). In the butt-coupled design, the optimized extinction ratio is up to 11.4 dB, while the insertion loss is only 6.74 dB. For the second one, which utilizes evanescent coupling, the extinction ratio and insertion loss are 9.18 dB and 6.72 dB, respectively.
Abstract:We present two designs for a waveguide Ge-quantum-well electro-absorption modulator. In our designs, the strip SOI waveguides are butt-coupled and evanescent-coupled to the modulator, respectively. The proposed Ge-quantum-well electro-absorption modulator is based on quantum-confined Stark effect (QCSE), having a 3-dB bandwidth above 50 GHz, as well as a low switching power (around 60 fJ/bit at 1435 nm). In the butt-coupled design, the optimized extinction ratio is up to 11.4 dB, while the insertion loss is only 6.74 dB. For the second one, which utilizes evanescent coupling, the extinction ratio and insertion loss are 9.18 dB and 6.72 dB, respectively.
[1] Xu Q, Schmidt B, Pradhan S and Lipson M 2005 Nature 435 325
[2] Liu J, Ahn D, Hong C Y, Jongthanmmanurak S, Pan D, Beals M, Kimerling L C, Michel J, Pomerene A T, Hill C, Jaso M, Tu K Y, Chen Y K, Patel S, Rasras M, White A and Gill D M 2006 Int. Conf. Group IV Photonics (Ottawa, Canada 13–15 September 2006) 173
[3] Marris D, Vivien L et al 2009 IEEE Proc. 97 1199
[4] Jongthammanurak S, Liu J, Wada K, Cannon D, Danielson D, Pan D, Kimeriling L and Michel J 2006 Appl. Phys. Lett. 89 161115
[5] Kuo Y, Lee Y, Ren S, Roth J E, Kamins T I, Miller D A B and Harris J S 2005 Nature 437 1334
[6] Kuo Y, Lee Y K, Ge Y, Ren S, Roth J E, Kamins T I, Miller D A B and Harris J S 2006 IEEE J. Sel. Top. Quantum Electron. 12 1503
[7] Roth J E, Fidaner O, Schaevitz R K, Kuo Y, Kamins T I, Harris J S and Miller D A B 2007 Opt. Express 15 5851
[8] Roth J E, Fidaner O, Edwards E H, Schaevitz R K, Kuo Y, Helman N C, Kamins T I, Harris J S and Miller D A B 2008 Electron. Lett. 44 49
[9] Fidaner O, Okyay A K, Roth J E, Kuo Y H, Saraswat K C, Harris J S and Miller D A B 2007 Frontiers in Optics, OSA Technical Digest (CD) (San Jose, California 16 September 2007) paper FMC2
[10] Van de Walle C G 1989 Phys. Rev. B 39 1871
[11] Chuang S L 1996 Physics of Optoelectronic Devices (New York: Wiley-Interscience) chap 13 p 566
[12] Groves S H, Pidgeon C R and Feinleib J 1966 Phys. Rev. Lett. 17 643
[13] Schaevitz R K, Roth J E, Ren S, Fidance O and Miller D A B 2008 IEEE J. Sel. Top. Quantum Electron. 14 1082
[14] Levinshtein M, Rumyantsev S and Shur M 1996 Handbook Series on Semiconductor Parameters (Singapore: World Scientific) chap 2 p 38
[15] Fidaner O, Okyay A K, Roth J E, Schaevitz R K, Kuo Y, Saraswat K C, Harris J S and Miller D A B 2007 IEEE Photon. Technol. Lett. 19 1631
[16] Chin M K and Chang W S C 1993 IEEE J. Quantum Electron. 29 2476
[17] Liu J, Pan D, Jongthammanurak S, Wada K, Kimerling L C and Michel J 2007 Opt. Express 15 623
[18] Liu J, Beals M, Pomerene A, Bernardis S, Sun R, Cheng J, Kimerling L C and Michel J 2008 Nature Photonics 2 433
[19] Green W M J, Rooks M J, Sekaric L and Vlasov Y A 2007 Opt. Express 15 17106
[20] Xu Q, Manipatruni S, Schmidt B, Shakya J and Lipson M 2007 Opt. Express 15 430