Measurement of Local Gravity via a Cold Atom Interferometer
ZHOU Lin1,2,3, XIONG Zong-Yuan1,2,3, YANG Wei1,2,3, TANG Biao1,2,3, PENG Wen-Cui1,2,3, WANG Yi-Bo1,2,3, XU Peng1,2,3, WANG Jin1,2, ZHAN Ming-Sheng1,2**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071 2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 3Graduate University of the Chinese Academy of Sciences, Beijing 100049
Measurement of Local Gravity via a Cold Atom Interferometer
ZHOU Lin1,2,3, XIONG Zong-Yuan1,2,3, YANG Wei1,2,3, TANG Biao1,2,3, PENG Wen-Cui1,2,3, WANG Yi-Bo1,2,3, XU Peng1,2,3, WANG Jin1,2, ZHAN Ming-Sheng1,2**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071 2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 3Graduate University of the Chinese Academy of Sciences, Beijing 100049
摘要We demonstrate a precision measurement of local gravity acceleration g in Wuhan by a compact cold atom interferometer. The atom interferometer is in vertical Mach–Zehnder configuration realized using a π/2−π-π/2 Raman pulse sequence. Cold atoms were prepared in a magneto-optical trap, launched upward to form an atom fountain, and then coherently manipulated to interfere by stimulated Raman transition. Population signal vs Raman laser phase was recorded as interference fringes, and the local gravity was deduced from the interference signal. We have obtained a resolution of 7×10−9 g after an integration time of 236 s under the best vibrational environment conditions. The absolute g value was derived from the chirp rate with a difference of 1.5×10−7 g compared to the gravity reference value. The tidal phenomenon was observed by continuously monitoring the local gravity over 123 h.
Abstract:We demonstrate a precision measurement of local gravity acceleration g in Wuhan by a compact cold atom interferometer. The atom interferometer is in vertical Mach–Zehnder configuration realized using a π/2−π-π/2 Raman pulse sequence. Cold atoms were prepared in a magneto-optical trap, launched upward to form an atom fountain, and then coherently manipulated to interfere by stimulated Raman transition. Population signal vs Raman laser phase was recorded as interference fringes, and the local gravity was deduced from the interference signal. We have obtained a resolution of 7×10−9 g after an integration time of 236 s under the best vibrational environment conditions. The absolute g value was derived from the chirp rate with a difference of 1.5×10−7 g compared to the gravity reference value. The tidal phenomenon was observed by continuously monitoring the local gravity over 123 h.
[1] Kasevich M A and Chu S 1991 Phys. Rev. Lett. 67 181
[2] Kasevich M A and Chu S 1992 Appl. Phys. B 54 321
[3] Peters A, Chung K Y and Chu S 1999 Nature 400 849
[4] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
[5] Legouët J et al 2008 Appl. Phys. B 92 133
[6] Malossi N et al 2010 Phys. Rev. A 81 013617
[7] Gustavson T L, Bouyer P and Kasevich M A 1997 Phys. Rev. Lett. 78 2046
[8] Canuel B, Leduc F et al 2006 Phys. Rev. Lett. 97 010402
[9] Snadden M J et al 1998 Phys. Rev. Lett. 81 971
[10] Yu N, Kohel J M, Kellogg J R and Maleki L 2006 Appl. Phys. B 84 647
[11] Wu X 2009 PhD Dissertation (California: Stanford University)
[12] Weiss D S, Young B C and Chu S 1993 Phys. Rev. Lett. 70 2706
[13] Wicht A, Hensley J M, Sarajlic E and Chu S 2002 Physica Scripta T102 82
[14] Cladé P et al 2006 Phys. Rev. Lett. 93 033001
[15] Müller H et al 2006 Appl. Phys. B 84 633
[16] Fixler J B Foster, Foster G T, McGuirk J M and Kasevich M A 2007 Science 315 74
[17] Lamporesi G et al 2008 Phys. Rev. Lett. 100 050801
[18] Fray S, Diez C A, Hänsch T W and Weitz M 2004 Phys. Rev. Lett. 93 240404
[19] Müller H et al 2008 Phys. Rev. Lett. 100 031101
[20] Müller H, Peters A and Chu S 2010 Nature 463 926
[21] Ferrari G, Poli N, Sorrentino F and Tino G M 2006 Phys. Rev. Lett. 97 060402
[22] Chiow S W, Herrmann S, Chu S and Müller H 2009 Phys. Rev. Lett. 103 050402
[23] Müller H, Chiow S W, Long Q, Herrmann S and Chu S 2008 Phys. Rev. Lett. 100 180405
[24] Dimopoulos S, Graham P W, Hogan J M and Kasevich M A 2007 Phys. Rev. Lett. 98 111102
[25] Arvanitaki A, Dimopoulos S, Geraci A A, Hogan J and Kasevich M A 2008 Phys. Rev. Lett. 100 120407
[26] Dimopoulos S, Graham P W, Hogan J M and Kasevich M A 2009 Phys. Lett. B 678 37
[27] Perl M L and Müller H 2010 arXiv:1001.4061v1
[28] Audretsch J et al 1994 Phys. Rev. A 50 2080
[29] Wang P, Li R B, Yan H, Wang J and Zhan M S 2007 Chin. Phys. Lett. 24 27
[30] Berman P R 1997 Atom Interferometry (San Diego: Academic) and references therein
[31] Ren L C, Zhou L, Li R B, Liu M, Wang J and Zhan M S 2009 Acta Phys. Sin. 58 130 (in Chinese)
[32] Li R B, Wang P, Yan H, Wang J and Zhan M S 2008 Phys. Rev. A 77 033425
[33] Li R B, Zhou L, Wang J and Zhan M S 2009 Opt. Commun. 282 1340
[34] Merlet S, Bodart Q, Malossi N, Landragin A, Pereira Dos Santos F, Gitlein O and Timmen L 2010 arXiv:1005.0357v2
[35] Bodart Q, Merlet S, Malossi N, Pereira Dos Santos F, Bouyer P and Landragin A 2010 Appl. Phys. Lett. 96 134101
[36] Carraz O, Liednhart F, Charriere R, Cadoret M, Zahzam N, Bidel Y and Bresson A 2009 Appl. Phys. B 97 405
[37] deAngelis M, Bertoldi A, Cacciapuoti L, Giorginni A, Lamporesi G, Prevedelli M, Saccorotti G, Sorrentino F and Tino G M 2009 Meas. Sci. Technol. 20 022001