摘要For a series of incoherent condensate atomic clouds with vortices (an orbital angular momentum) released from an optical lattice, the density-density correlation function of this freely expanding ultracold gases is theoretically investigated. It is shown that the nonzero angular momentum of the atoms has an important effect on the fringe pattern of density-density correlation. Particularly, for a short expansion time, even the rotation direction of the atoms could have an observable effect on the fringe pattern. Observation of this specific fringe pattern would constitute experimental evidence for the presence of a vortex in an atomic condensate.
Abstract:For a series of incoherent condensate atomic clouds with vortices (an orbital angular momentum) released from an optical lattice, the density-density correlation function of this freely expanding ultracold gases is theoretically investigated. It is shown that the nonzero angular momentum of the atoms has an important effect on the fringe pattern of density-density correlation. Particularly, for a short expansion time, even the rotation direction of the atoms could have an observable effect on the fringe pattern. Observation of this specific fringe pattern would constitute experimental evidence for the presence of a vortex in an atomic condensate.
XU Zhi-Jun**;ZHANG Dong-Mei;LIU Xia-Yin
. Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. 中国物理快报, 2011, 28(1): 10305-010305.
XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin
. Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice. Chin. Phys. Lett., 2011, 28(1): 10305-010305.
[1] Brown R H and Twiss R Q 1956 Nature 177 27
[2] Henny M Oberholzer S Strunk C Heinzel T Ensslin K Holland M and Schönenberger C 1999 Science 284 296
[3] Oliver W D Kim J Liu R C and Yamamoto Y 1999 Science 284 299
[4] Kiesel H Renz A and Hasselbach F 2002 Nature 418 392
[5] Bachor H A and Ralph T C A 2004 Guide to Experiments in Quantum Optics (Weinheim: Wiley-VCH)
[6] Baym G 1998 Acta Phys. Pol. B 29 1839
[7] Yasuda M and Shimizu F 1996 Phys. Rev. Lett. 77 3090
[8] Boal D H Gelbke C K and Jennings B K 1990 Rev. Mod. Phys. 62 553
[9] Fölling S Gerbier F Widera A Mandel O Gericke T and Bloch I 2005 Nature 434 481
[10] Altman E Demler E and Lukin M D 2004 Phys. Rev. A 70 013603
[11] Yasuda M and Shimizu F 1996 Phys. Rev. Lett. 77 3090
[12] Grondalski J Alsing P M and Deutsch I H 1999 Opt. Express 5 249
[13] Wang X R Yang L Tan X Z Xiong H W and Lu B L 2009 Chin. Phys. Lett. 26 083701
[14] Lobo C Carusotto I Giorgini S Recati A and Stringari S 2006 Phys. Rev. Lett. 97 100405
[15] Caux J S and Calabrese P 2006 Phys. Rev. A 74 031605(R)
[16] Duan L M 2006 Phys. Rev. Lett. 96 103201
[17] Niu Q Carusotto I and Kuklov A B 2006 Phys. Rev. A 73 053604
[18] Menotti C Trefzger C and Lewenstein M 2007 Phys. Rev. Lett. 98 235301
[19] Li Y Chen L S and Xiong H W 2007 Phys. Rev. A 76 063608
[20] Liu S J Xiong H Wand Lu B L 2008 Phys. Rev. A 77 063619
[21] Jeltes T McNamara J M Hogervorst W Vassen W Krachmalnicoff V Schellekens M Perrin A Chang H Boiron D Aspect A and Westbrook C I 2007 Nature 445 402
[22] Spielman I B Phillips W D and Porto J V 2007 Phys. Rev. Lett. 98 080404
[23] Bernier J S Dao T-L Kollath C Georges A Cornaglia P S 2010 Phys. Rev. A 81 063618
[24] Benatti F Floreanini R and Guerreschi G G 2009 Phys. Lett. A 373 3516
[25] Greiner M Mandel O Esslinger T Hänsch T W and Bloch I 2002 Nature 415 39
[26] Wick G C 1950 Phys. Rev. 80 268