摘要This research concerns with the development of a linear three-dimensional numerical model in a quantum environment. We use the semi inverse variational method together with B-spline bases to extract the structures of bound states of the Schrödinger equation. The model performances are demonstrated for the Coulomb type problem. From realistic examples, some state configurations are presented to illustrate the effectiveness and the exactitude of the proposed method.
Abstract:This research concerns with the development of a linear three-dimensional numerical model in a quantum environment. We use the semi inverse variational method together with B-spline bases to extract the structures of bound states of the Schrödinger equation. The model performances are demonstrated for the Coulomb type problem. From realistic examples, some state configurations are presented to illustrate the effectiveness and the exactitude of the proposed method.
A. Zerarka**;O. Haif-Khaif;K. Libarir;A. Attaf
. Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. 中国物理快报, 2011, 28(1): 10202-010202.
A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf
. Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis. Chin. Phys. Lett., 2011, 28(1): 10202-010202.
[1] Iachello F 1993 Nucl. Phys. A 560 23
[2] Selg M 2001 Phys. Rev. E 64 056701
[3] Dong S H 2000 Int. J. Theor. Phys. 39 1119
[4] Bose S K and Gupta N 1998 IL NUOVO CIMENTO B 113 299
[5] Varshni Y P 1990 Phys. Rev. A 41 4682
[6] Sinha A, Roychoudhury R and Varshni Y P 2000 Can. J. Phys. 78 141
[7] Braun M, Sofianos S A, Papageorgiou D G and Lagaris I E 1996 J. Computat. Phys. 126 315
[8] Bose S K 1994 IL NUOVO CIMENTO B 109 1217
[9] Child M S, Dong S H and Wang X G 2000 J. Phys. A: Math. Gen. 33 5653
[10] Exton H 1995 J. Phys. A: Math. Gen. 28 6739
[11] Alomari A K, Noorani M S M and Nazar R 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 1196
[12] Zerarka A, Saidi H, Hassouni S and Bensalah N 2006 Appl. Math. Comput. 182 665
[13] Liu X Q and Yan Z L 2007 Commun. Nonlin. Sci. Numer. Simulat. 12 1355
[14] Zerarka A, Hassouni S, Saidi H and Boumedjane Y 2005 Commun. Nonlin. Sci. Numer. Simulat. 10 737
[15] Zhou X W 2007 Comput. Math. Appl. 54 1000
[16] Zerarka A, Bensalah N and Hans J 2005 Theor. Math. Phys. 142 470
[17] Morrison J C and Bottcher C 1993 J. Phys. B: At. Mol. Opt. Phys. 26 3999
[18] Johnson W R, Blundell S A and Sapirstein J 1988 Phys. Rev. A 37 307
[19] Fang T K and Chang T N 2000 Phys. Rev. A 61 062704
[20] van der Hart H 1997 J. Phys. B 30 453
[21] Prenter P M 1975 Splines and Variational Methods (New York: Wiley-Interscience)
[22] de Boor C A 1978 Practical Guide to Splines (New York: Springer-Verlag)
[23] Bhutani O P and Sharma S 1979 Int. J. Engin. Sci. 17 475