摘要Single crystalline Cr-doped GaN films are successfully grown by hydride vapor phase epitaxy. The structure analysis indicates that the film is uniform without detectable Cr precipitates or clusters and the Cr atoms are substituted for Ga sites. The impurity modes in the range 510–530 cm−1 are observed by the Raman spectra. The modes are assigned to the host lattice defects caused by substitutional Cr. The donor-acceptor emission is found to locate at Ec−0.20 eV by analyzing the photoluminescence spectrum obtained at different temperatures, and the emission is attributed to the structural defects caused by CrGa−VN complex. The superconductor quantum interference device results show that the Cr-doped GaN film without detectable Cr precipitates or clusters exhibits paramagnetic properties.
Abstract:Single crystalline Cr-doped GaN films are successfully grown by hydride vapor phase epitaxy. The structure analysis indicates that the film is uniform without detectable Cr precipitates or clusters and the Cr atoms are substituted for Ga sites. The impurity modes in the range 510–530 cm−1 are observed by the Raman spectra. The modes are assigned to the host lattice defects caused by substitutional Cr. The donor-acceptor emission is found to locate at Ec−0.20 eV by analyzing the photoluminescence spectrum obtained at different temperatures, and the emission is attributed to the structural defects caused by CrGa−VN complex. The superconductor quantum interference device results show that the Cr-doped GaN film without detectable Cr precipitates or clusters exhibits paramagnetic properties.
YAN Huai-Yue;XIU Xiang-Qian;HUA Xue-Mei;LIU Zhan-Hui;ZHOU An;ZHANG Rong;XIE Zi-Li;HAN Ping;SHI Yi;ZHENG You-Dou
. Optical and Structural Properties of Cr-Doped GaN Grown by HVPE Method[J]. 中国物理快报, 2010, 27(12): 127801-127801.
YAN Huai-Yue, XIU Xiang-Qian, HUA Xue-Mei, LIU Zhan-Hui, ZHOU An, ZHANG Rong, XIE Zi-Li, HAN Ping, SHI Yi, ZHENG You-Dou
. Optical and Structural Properties of Cr-Doped GaN Grown by HVPE Method. Chin. Phys. Lett., 2010, 27(12): 127801-127801.
[1] Ohno H 1998 Science 281 951
[2] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[3] Hite J K, Allums K K, Thaler G T, Abernathy C R, Pearton S J, Frazier R M, Dwivedi R, Wilkins R and Zavada J M 2008 New J. Phys. 10 055005
[4] Toth M and Phillips M R 1999 Appl. Phys. Lett. 75 3983
[5] Hashimoto M, Zhou Y K, Kanamura M, Katayama-Yoshida H and Asahi H 2003 J. Cryst. Growth 251 327
[6] Perlin P, Suski T, Teisseyre H, Leszczynski M, Grzegory I, Jun J, Porowski S, Bogusławski P, Bernholc J, Chervin J C, Polian A and Moustakas T D 1995 Phys. Rev. Lett. 75 296
[7] Ager J, Suski T, Ruvinov S, Krueger J, Conti G, Weber E, Bremser M, Davis R and Kuo C 1997 Mater. Res. Soc. Symp. Proc. 449 775
[8] Seitz R, Monteiro T, Pereira E and Di Forte-Poisson M 1999 Phys. Status Solidi A 176 661
[9] Tao Z K, Zhang R, Cui X G, Xiu X Q, Zhang G Y, Xie Z L, Gu S L, Shi Y and Zheng Y D 2008 Chin. Phys. Lett. 25 1476
[10] Hasuike N, Fukumura H, Harima H, Kisoda K, Hashimoto M, Zhou Y K and Asahi H 2004 J. Phys.: Condens. Matter 16 S5811
[11] Harima H 2004 J. Phys.: Condens. Matter 16 S5653
[12] Liu R, Bell1 A, Ponce F A, Chen C Q, Yang J W and Khan M A 2005 Appl. Phys. Lett. 86 021908
[13] Li D B, Ma B, Miyagawa R, Hu W G, Narukawa M, Miyake H and Hiramatsu K 2009 J. Cryst. Growth 311 2906
[14] Shanthi S, Hashimoto M, Zhou Y K, Kimura S, Emura S, Hasegawa S, Hasuike N, Harima H and Asahi H 2005 Appl. Phys. Lett. 86 092102
[15] Morkoç H, Strite S, Gao G B, Lin M E, Sverdlov B and Burns M 1994 J. Appl. Phys. 76 1363
[16] Zhang R and Kuech T F 1998 J. Electron. Mater. 27 L35
[17] Xu B and Pan B C 2009 J. Appl. Phys. 105 103710
[18] Yamaguchi K, Tomioka H, Yui T, Suemasu T, Ando K, Yoshizaki R and Hasegawa F 2005 Jpn. J. Appl. Phys. 44 6510
[19] Xiu X Q, Zhang R, Li B B, Xie Z L, Chen L, Liu B, Han P, Gu S L, Shi Y and Zheng Y D 2006 J. Cryst. Growth 292 212