Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability
YE Wen-Hua1,2,3**, WANG Li-Feng2,3,4, HE Xian-Tu1,2,3
1Department of Physics, Zhejiang University, Hangzhou 310027 2CAPT, Peking University, Beijing 100871 3LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 4SMCE, China University of Mining and Technology, Beijing 100083
Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability
YE Wen-Hua1,2,3**, WANG Li-Feng2,3,4, HE Xian-Tu1,2,3
1Department of Physics, Zhejiang University, Hangzhou 310027 2CAPT, Peking University, Beijing 100871 3LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 4SMCE, China University of Mining and Technology, Beijing 100083
摘要We report the formation of jet-like long spike in the nonlinear evolution of the ablative Rayleigh–Taylor instability (ARTI) experiments by numerical simulations. A preheating model κ(T)=κSH[1+f(T)], where κSH is the Spitzer–Härm (SH) electron conductivity and f(T) interprets the preheating tongue effect in the cold plasma ahead of the ablative front [Phys. Rev. E 65 (2002) 57401], is introduced in simulations. The simulation results of the nonlinear evolution of the ARTI are in general agreement with the experiment results. It is found that two factors, i.e., the suppressing of ablative Kelvin–Helmholtz instability (AKHI) and the heat flow cone in the spike tips, contribute to the formation of jet-like long spike in the nonlinear evolution of the ARTI.
Abstract:We report the formation of jet-like long spike in the nonlinear evolution of the ablative Rayleigh–Taylor instability (ARTI) experiments by numerical simulations. A preheating model κ(T)=κSH[1+f(T)], where κSH is the Spitzer–Härm (SH) electron conductivity and f(T) interprets the preheating tongue effect in the cold plasma ahead of the ablative front [Phys. Rev. E 65 (2002) 57401], is introduced in simulations. The simulation results of the nonlinear evolution of the ARTI are in general agreement with the experiment results. It is found that two factors, i.e., the suppressing of ablative Kelvin–Helmholtz instability (AKHI) and the heat flow cone in the spike tips, contribute to the formation of jet-like long spike in the nonlinear evolution of the ARTI.
YE Wen-Hua;**;WANG Li-Feng;;HE Xian-Tu;
. Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. 中国物理快报, 2010, 27(12): 125203-125203.
YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu,
. Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability. Chin. Phys. Lett., 2010, 27(12): 125203-125203.
[1] Lindl J D, Amendt P and Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffan R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[2] Atzeni S and Meyer-ter-Vehn J 2004 The Physics of Inerial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Mater (OxfordOxford: University Press)
[3] Shigemori K, Azechi H, Nakai M, Honda M, Meguro K, Miyanaga N, Takabe H and Mima K 1997 Phys. Rev. Lett. 78 250
[4] Glendinning S G, Dixit S N, Hammel B A, Kalantar D H, Key M H, Kilkenny J D, Knauer J P, Pennington D M, Remington B A, Wallace R J, and Weber S V 1997 Phys. Rev. Lett. 78 3318
[5] Sakaiya T, Azechi H, Matsuoka M, Izumi N, Nakai M, Shigemori K, Shiraga H, SunaharaA, Takabe H and Yamanaka T 2002 Phys. Rev. Lett. 88 145003
[6] Azechi H, Sakaiya T, Fujioka S, Tamari Y, Otani K, Shigemori K, Nakai M, Shiaga H, Miyanaga N and Mima K 2007 Phys. Rev. Lett. 98 045002
[7] Sanz J, Ramírez J, Ramis R, Betti R and Town R P J 2002 Phys. Rev. Lett. 89 195002
[8] Garnier J, Raviart P -A, Cherfils-Clèrouink C and Masse L 2003 Phys. Rev. Lett. 90 185003
[9] Ikegawa T, Nishihara K 2002 Phys. Rev. Lett. 89 115001
[10] Sanz J 2002 Phys. Rev. Lett. 73 (20) 2700
[11] Pirize A P, Sanz J and Ibañez L F 1997 Phys. Plasmas 4 1117
[12] Goncharov V N, Betti R, McCrory R L, Sorotokin P and Verdon C P 1996 Phys. Plasmas 3 1402
[13] Betti R, Goncharov V N, McCrory R L and Verdon C P 1998 Phys. Plasmas 5 1446
[14] Masse L 2007 Phys. Rev. Lett. 98 245001
[15] Remington B A, Haan S W, Glendinning S G, Kilkenny J D, Munro D H and Wallace R J 1992 Phys. Fluids B 4 967
[16] Remington B A, Drake R P, Takabe H and Arnett D 2000 Phys. Plasmas 7 1641
[17] Mason R J, Hollowell D E, Schappert G T and Batha S H 2001 Phys. Plasmas 8 2338
[18] Nakai S, Yamanaka T, Izawa Y, Kato Y, Nishihara K, Nakatsuka M, Sasaki T, Takabe H, et al 1995 Plasma Physics and Controlled Fusion Research 1994, Fifteen International Conference Proceedings (Seville Spain 28 September–1 Octoober 1994) (IAEA: Vienna) vol 3 p 3
[19] Kane J O, Robey H F, Remington B A, Drake R P, Knauer J, Ryutov D D, Louis H, Teyssier R, Hurricane O, Arnett D, Rosner R and Calder A 2001 Phys. Rev. E 63 055401
[20] Ye Wenhua, Zhang Weiyan and He X T 2002 Phys. Rev. E 65 57401
[21] Wang L F, Ye W H, Fan Z F, Li Y J, He X T and Yu M Y 2009 Europhys. Lett. 86 15002
[22] Wang L F, Ye W H and Li Y J 2009 Europhys. Lett. 87 54005
[23] Wang L F, Ye W H and Li Y J 2010 Phys. Plasmas 17 052305
[24] Wang L F, Xue C, Ye W H and Li Y J 2009 Phys. Plasmas 16 112104
[25] Wang L F, Ye W H, Fan Z F and Li Y J 2010 Europhys. Lett. 89 15001
[26] Wang L F, Ye W H and Li Y J 2010 Chin. Phys. Lett. 27 025202