摘要Quantum effects on Rayleigh–Taylor instability of a stratified incompressible plasmas layer under the influence of vertical magnetic field are investigated. The solutions of the linearized equations of motion together with the boundary conditions lead to deriving the relation between square normalized growth rate and square normalized wave number in two algebraic equations and are numerically analyzed. In the case of the real solution of these two equations, they can be combined to generate a single equation. The results show that the presence of vertical magnetic field beside the quantum effect will bring about more stability on the growth rate of unstable configuration.
Abstract:Quantum effects on Rayleigh–Taylor instability of a stratified incompressible plasmas layer under the influence of vertical magnetic field are investigated. The solutions of the linearized equations of motion together with the boundary conditions lead to deriving the relation between square normalized growth rate and square normalized wave number in two algebraic equations and are numerically analyzed. In the case of the real solution of these two equations, they can be combined to generate a single equation. The results show that the presence of vertical magnetic field beside the quantum effect will bring about more stability on the growth rate of unstable configuration.
(Magnetohydrodynamics (including electron magnetohydrodynamics))
引用本文:
G. A. Hoshoudy
. Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field[J]. 中国物理快报, 2010, 27(12): 125201-125201.
G. A. Hoshoudy
. Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field. Chin. Phys. Lett., 2010, 27(12): 125201-125201.
[1] Markowic P A, Ringhofer C and Schmeiser C 1990 Semiconductor Equations (New York: Springer-Verlag)
[2] Opher M et al 2001 Phys. Plasmas 8 2454
[3] Jung Y D 2001 Phys. Plasmas 8 3842
[4] Kremp D et al 1999 Phys. Rev. E 60 4725
[5] Leontovich M and Akad Lzv 1994 Nauk SSSR 8 16
[6] Agrawal G 1995 Nonlinear Fiber Optics (San Diego: Academic)
[7] Manfredi G and Haas F 2001 Phys. Rev. B 64 075316
[8] Manfredi G 2005 How to Model Quantum Plasmas (Fields Institute Communications) ser 46 pp 263–287
[9] Gardner G 1994 SIAM J. Appl. Math. 54 409
[10] Haas F et al 2002 Phys. Rev. E 62 2763
[11] Haas F 2005 Phys. Plasmas 12 062117
[12] Lundin J et al 2008 Phys. Plasmas 15 072116
[13] Rayleigh L 1883 Proc. Math. Soc. London 14 170
[14] Taylor G I 1950 Proc. R. Soc. London A 201 192
[15] Vitaly B et al 2008 Phys. Lett. A 372 3042
[16] Cao J T et al 2008 Phys. Plasmas 15 012110
[17] Hoshoudy G A 2009 Phys. Plasmas 16 024501
[18] Hoshoudy G A 2009 Phys. Plasmas 16 064501
[19] Modestov M et al 2009 Phys. Plasmas 16 032106
[20] Hoshoudy G A 2009 Phys. Lett. A 373 2560
[21] Ali S et al 2009 Phys. Lett. A 373 2940
[22] Brodin G et al 2008 Phys. Rev. Lett. 100 175001
[23] Bhimsen Shivamoggi K 1981 Astrophys. Space Sci. 79 3
[24] Liberatore S et al 2009 Phys. Plasmas 16 044502
[25] Goldston R J and Rutherford P H 1997 Introduction to Plasma Physics Institute of Physics (Bristol: Institute of Physics Publishing) chap 19 p 309