Off-Resonant Third-Order Optical Nonlinearity of Au Nanoparticle Array by Femtosecond Z-scan Measurement
WANG Kai1, LONG Hua1, FU Ming1, YANG Guang1**, LU Pei-Xiang1,2**
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 2School of Science, Wuhan Institute of Technology, Wuhan 430073
Off-Resonant Third-Order Optical Nonlinearity of Au Nanoparticle Array by Femtosecond Z-scan Measurement
WANG Kai1, LONG Hua1, FU Ming1, YANG Guang1**, LU Pei-Xiang1,2**
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 2School of Science, Wuhan Institute of Technology, Wuhan 430073
摘要A periodic triangular-shaped Au nanoparticle array is fabricated on a quartz substrate using nanosphere lithography and pulsed laser deposition, and the linear and nonlinear optical properties of metal particles are studied. The morphology of the polystyrene nanosphere mask (D=820 nm) and the Au nanoparticle array are investigated by scanning electron microscopy. The surface plasmon resonance absorption peak is observed at 606 nm, which is in good agreement with the calculated result using the discrete dipole approximation method. By performing the Z−scan method with femtosecond laser (800 nm, 50 fs), the optical nonlinearities of Au nanoparticle array are determined. The results show that the Au particles exhibit negative nonlinear absorption and positive nonlinear refractive index with the effective third-order optical nonlinear susceptibility χeff(3) can be up to (8.8±1.0)×10−10 esu under non-resonant femtosecond laser excitation.
Abstract:A periodic triangular-shaped Au nanoparticle array is fabricated on a quartz substrate using nanosphere lithography and pulsed laser deposition, and the linear and nonlinear optical properties of metal particles are studied. The morphology of the polystyrene nanosphere mask (D=820 nm) and the Au nanoparticle array are investigated by scanning electron microscopy. The surface plasmon resonance absorption peak is observed at 606 nm, which is in good agreement with the calculated result using the discrete dipole approximation method. By performing the Z−scan method with femtosecond laser (800 nm, 50 fs), the optical nonlinearities of Au nanoparticle array are determined. The results show that the Au particles exhibit negative nonlinear absorption and positive nonlinear refractive index with the effective third-order optical nonlinear susceptibility χeff(3) can be up to (8.8±1.0)×10−10 esu under non-resonant femtosecond laser excitation.
WANG Kai;LONG Hua;FU Ming;YANG Guang**;LU Pei-Xiang;**. Off-Resonant Third-Order Optical Nonlinearity of Au Nanoparticle Array by Femtosecond Z-scan Measurement[J]. 中国物理快报, 2010, 27(12): 124204-124204.
WANG Kai, LONG Hua, FU Ming, YANG Guang**, LU Pei-Xiang, **. Off-Resonant Third-Order Optical Nonlinearity of Au Nanoparticle Array by Femtosecond Z-scan Measurement. Chin. Phys. Lett., 2010, 27(12): 124204-124204.
[1] Haes J, Hall W P, Chang L, Klein W L and Van Duyne R P 2004 Nano Lett. 4 1029
[2] Park S J, Taton T A and Mirkin C A 2002 Science 295 1503
[3] Narayanan R and El-Sayed M A 2004 Nano Lett. 4 1343
[4] Okada N, Hamanaka Y, Nakamura A, Pastoriza-Santos I and Liz-Marzán L M 2004 J. Phys. Chem. B 108 8751
[5] Hamanaka Y, Nakamura A, Hayashi N and Omi S 2003 J. Opt. Soc. Am. B 20 1227
[6] Jayabalan J, Singh A, Chari R and Oak S M 2007 Nanotechnology 18 315704
[7] Tran P 1997 J. Opt. Soc. Am. B 14 2589
[8] Hulteen J C and Van Duyne R P 1995 J. Vac. Sci. Technol. A 13 1553
[9] Haynes C L and Van Duyne R P 2001 J. Phys. Chem. B 105 5599
[10] Yuen K P, Law M F and Sheng P 1997 Phys. Rev. E 56 R1322
[11] Huang J P and Yu K W 2005 J. Opt. Soc. Am. B 22 1640
[12] Shen H, Cheng B, Lu G W, Ning T Y, Guan D Y, Zhou Y L and Chen Z G 2006 Nanotechnology 17 4274
[13] Nahata A, Linke R A and Ohashi K 2003 Opt. Lett. 28 423
[14] Sheik-Bahae M, Said A A, Wei T H, Hagan D J and Van Stryland E W 1990 IEEE J. Quantum Electron. 26 760
[15] Huang W Y, Qian W and El-Sayed M A 2005 J. Phys. Chem. B 109 18881
[16] Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 14919
[17] Draine B T and Flatau P J 2008 User Guide to the Discrete Dipole Approximation Code DDSCAT 7. 0 arXiv:0809.0337v5
[18] Ricard D, Roussignol P and Flytzanis C 1985 Opt. Lett. 10 511
[19] Lide D R 2001 Handbook of Chemistry and Physics (Florida: CRC)
[20] Uchida O K, Kaneko S, Omi S, Hata C, Tanji H, Asahara Y, Ikushima A J, Tokizaki T and Nakamura A 1994 J. Opt. Soc. Am. B 11 1236
[21] Kamaraju N, Kumar S,. Karthikeyan B, Moravsky A, Loutfy R O and Sood A K 2008 Appl. Phys. Lett. 93 091903
[22] Gu B, Wang Y, Wang J and Ji W 2009 Opt. Express 17 10970
[23] Rativa D, Araujo R E, Araújo C B, Gomes A S L and Kassab L R P 2007 Appl. Phys. Lett. 90 231906
[24] Lopez R, Haglund R F, Feldman L C, Boatner L A and Haynes T E 2004 Appl. Phys. Lett. 85 5191