摘要Quasi-classical trajectory theory is used to study the isotope effect of oxygen atoms on the vector correlations in the O(3P)+D2 reaction at a collision energy of 25kcal/mol using accurate potential energy surface of the 3A' triplet state. The distributions of p(θr) and the distribution of dihedral angel p(φr) as well as p(θr, φr) are calculated. Moreover, four polarization-dependent generalized differential cross sections (PDDCSs) of product are presented in the center-of-mass frame. The results indicate that the polarization of the product presents different characters for the isotope effect of oxygen atoms. Isotopic substitute can cause obviously different effects on the four PDDCSs.
Abstract:Quasi-classical trajectory theory is used to study the isotope effect of oxygen atoms on the vector correlations in the O(3P)+D2 reaction at a collision energy of 25kcal/mol using accurate potential energy surface of the 3A' triplet state. The distributions of p(θr) and the distribution of dihedral angel p(φr) as well as p(θr, φr) are calculated. Moreover, four polarization-dependent generalized differential cross sections (PDDCSs) of product are presented in the center-of-mass frame. The results indicate that the polarization of the product presents different characters for the isotope effect of oxygen atoms. Isotopic substitute can cause obviously different effects on the four PDDCSs.
(Molecule transport characteristics; molecular dynamics; electronic structure of polymers)
引用本文:
LIU Shi-Li;SHI Ying
. Theoretical Study of Isotopic Effect of Oxygen Atom on the Stereodynamics for the O(3P)+ D2 → OD+D Reaction[J]. 中国物理快报, 2010, 27(12): 123103-123103.
LIU Shi-Li, SHI Ying
. Theoretical Study of Isotopic Effect of Oxygen Atom on the Stereodynamics for the O(3P)+ D2 → OD+D Reaction. Chin. Phys. Lett., 2010, 27(12): 123103-123103.
[1] Glassman 1996 Combustion 3rd ed (New York: Academic)
[2] Reynard L M, Donaldson D J 2001 Geophys. Res. Lett. 28 2157
[3] Marcus R A 2004 J. Chem. Phys. 121 8201
[4] Garton D J, Minton T K, Maiti B, Troya D and Schatz G C 2003 J. Chem. Phys. 118 1585
[5] Robie D C, Arepalli S, Presser N, Kitsopoulos T and Gordon R J 1990 J. Chem. Phys. 92 7382
[6] Robie D C, Arepalli S, Presser N, Kitsopoulos T and Gordon R J 1987 Chem. Phys. Lett. 134 579
[7] Zhao J, Xu Y, Yue D G and Meng Q T 2009 Chem. Phys. Lett. 471 160
[8] Han K L, Zhang D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
[9] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[10] Wang W L, Rosa C and Brandao J 2006 Chem. Phys. Lett. 418 250
[11] Braunstein M, Adler-Golden S, Maiti B and Schatz G C 2004 J. Chem. Phys. 120 4316
[12] Sultanov R A and Balakrishnanjcp N 2004 J. Chem. Phys. 121 11038
[13] Nakamura M 1992 J. Chem. Phys. 96 2724
[14] Maiti B and Schatz G C 2003 J. Chem. Phys. 119 12360
[15] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[16] Chu T S, Zhang X and Han K L 2005 J. Chem. Phys. 122 214301
[17] Song J B and Gislason E A 1996 Chem. Phys. 202 1
[18] Rogers S, Wang D S, Kuppermann A and Walch S 2000 J. Phys. Chem. A 104 2308
[19] Wu V W K 2010 Chin. J. Chem. Phys. 23 149
[20] Wei Q, Li X and Li T 2009 Chin. J. Chem. Phys. 22 523
[21] Li Y M, Xie Z M and Dang Q 2010 Chin. J. Chem. Phys. 23 310
[22] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[23] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[24] Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
[25] Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chem. Phys. 367 115
[26] Wei Q, Li X and Li T 2010 Chem. Phys. 368 58
[27] Prisant M G, Rettner C T and Zare R N 1981 J. Chem. Phys. 75 2222
[28] Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
[29] Wang M L, Han K L and He G Z 1999 J. Phys. Chem. A 102 10204
[30] Zhang C H, Zhang W Q and Chen M D 2009 J. Theor. Comput. Chem. 8 403
[31] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[32] Li W L, Wang M S, Yang C L, Liu W W, Sun C and Ren T Q 2007 Chem. Phys. 337 93