PENG Jing1**, YAO Jiang-Ming2, ZHANG Shuang-Quan3, MENG Jie3,4,5
1Department of Physics, Beijing Normal University, Beijing 100875 2School of Physical Science and Technology, Southwest University, Chongqing 400715 3State Key Lab Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 4Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 5Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000
Exotic Magnetic Rotation in 22F
PENG Jing1**, YAO Jiang-Ming2, ZHANG Shuang-Quan3, MENG Jie3,4,5
1Department of Physics, Beijing Normal University, Beijing 100875 2School of Physical Science and Technology, Southwest University, Chongqing 400715 3State Key Lab Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 4Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 5Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000
摘要The rotation structure in exotic neutron-rich nucleus 22F is investigated based on the configuration πd5/2⊗νd−15/2 with the newly developed tilted axis cranking relativistic mean field theory in a fully microscopic and self-consistent way. The possible existence of magnetic rotation is suggested for 22F via investigating the spectra, the relation between the rotational frequency and the angular momentum, the electromagnetic transition probabilities B(M1) and B(E2) together with the shears mechanism characteristic of magnetic rotation. The effect of the nuclear current is also discussed by comparing the calculation results with and without currents.
Abstract:The rotation structure in exotic neutron-rich nucleus 22F is investigated based on the configuration πd5/2⊗νd−15/2 with the newly developed tilted axis cranking relativistic mean field theory in a fully microscopic and self-consistent way. The possible existence of magnetic rotation is suggested for 22F via investigating the spectra, the relation between the rotational frequency and the angular momentum, the electromagnetic transition probabilities B(M1) and B(E2) together with the shears mechanism characteristic of magnetic rotation. The effect of the nuclear current is also discussed by comparing the calculation results with and without currents.
[1] Mottelson B R et al 1960 Phys. Rev. Lett. 5 511
[2] Johnson A et al 1971 Phys. Lett. B 34 605
[3] Stephens F S and Simon R S 1972 Nucl. Phys. A 183 257
[4] Newton J O et al 1981 Phys. Rev. Lett. 46 1383
[5] Twin P J et al 1986 Phys. Rev. Lett. 57 811
[6] Frauendorf S, Meng J and Reif J 1994 in Proceedings of the Conference on Physics From Large γ-Ray Detector Arrays ed Deleplanque M A (California) Report LBL35687 II 52
[7] Bohr A and Mottelson B R 1975 Nuclear Structure (MA: Benjamin, Reading) II
[8] Frauendorf S and Meng J 1997 Nucl. Phys. A 617 131
[9] Frauendorf S 1993 Nucl. Phys. A 557 259c
[10] Frauendorf S and Meng J 1996 Z Phys. A 356 263
[11] Peng J et al 2003 Phys. Rev. C 68 044324
[12] Bonche P et al 1987 Nucl. Phys. A 467 115
[13] Egido J L and Robledo L M 1993 Phys. Rev. Lett. 70 2876
[14] Afanasjev A V et al 1999 Phys. Rev. C 60 051303(R)
[15] Madokoro H et al 2000 Phys. Rev. C 62 061301
[16] Olbratowski P et al 2002 Acta Physica Polonica B 33 389
[17] Olbratowski P et al 2004 Phys. Rev. Lett. 93 052501
[18] Neffgen M et al 1995 Nucl. Phys. A 595 499
[19] Clark R M et al 1997 Phys. Rev. Lett. 78 1868
[20] Jain A K et al 2000 Atom. Data Nucl. Data Tables 74 286
[21] Torres D A et al 2008 Phys. Rev. C 78 054318
[22] Ring P 1996 Prog. Part. Nucl. Phys. 37 193
[23] Meng J et al 2006 Prog. Part. Nucl. Phys. 57 470
[24] Meng J and Ring P 1996 Phys. Rev. Lett. 77 3963
[25] Koepf W and Ring P 1990 Nucl. Phys. A 511 279
[26] König J and Ring P 1993 Phys. Rev. Lett. 71 3079
[27] Meng J et al 2006 Phys. Rev. C 73 037303
[28] Peng J et al 2008 Phys. Rev. C 77 024309
[29] Peng J et al 2008 Phys. Rev. C 78 024313
[30] Long W et al 2004 Phys. Rev. C 69 034319