Is Low-Frequency-Peaked BL Lac Object OJ 287 a TeV Emitter?
CHEN Liang1,2,3**, BAI Jin-Ming1,2
1National Astronomical Observatories Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 2Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 3The Graduate School of Chinese Academy of Sciences, Beijing 100049
Is Low-Frequency-Peaked BL Lac Object OJ 287 a TeV Emitter?
CHEN Liang1,2,3**, BAI Jin-Ming1,2
1National Astronomical Observatories Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 2Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 3The Graduate School of Chinese Academy of Sciences, Beijing 100049
摘要It is well known that there are only two low-frequency-peaked BL Lac objects (LBLs: BL Lacertae and S5 0716+714) and one flat spectrum radio quasar (FSRQ: 3C 279) among more than 30 active galactic nuclei (AGNs) with detected TeV emissions. We study the spectral energy distribution (SED) of a famous LBL OJ 287, whose light curve has a 12-y period. Using a homogeneous one-zone synchrotron + synchrotron-self Compton model, we model the quasi-simultaneous broad-band SED of OJ 287. With some reasonable assumptions, we extrapolate the model to the high state of OJ 287 and predict its γ−ray emissions. Taking into account the absorption of γ-ray by the extragalactic background light (EBL), we find that the TeV emission of OJ 287 in high state is slightly higher than the sensitivity of H.E.S.S. The study on SEDs of OJ 287 has implications to unveil the origin of jet activity during its 12-y period and the properties of EBL.
Abstract:It is well known that there are only two low-frequency-peaked BL Lac objects (LBLs: BL Lacertae and S5 0716+714) and one flat spectrum radio quasar (FSRQ: 3C 279) among more than 30 active galactic nuclei (AGNs) with detected TeV emissions. We study the spectral energy distribution (SED) of a famous LBL OJ 287, whose light curve has a 12-y period. Using a homogeneous one-zone synchrotron + synchrotron-self Compton model, we model the quasi-simultaneous broad-band SED of OJ 287. With some reasonable assumptions, we extrapolate the model to the high state of OJ 287 and predict its γ−ray emissions. Taking into account the absorption of γ-ray by the extragalactic background light (EBL), we find that the TeV emission of OJ 287 in high state is slightly higher than the sensitivity of H.E.S.S. The study on SEDs of OJ 287 has implications to unveil the origin of jet activity during its 12-y period and the properties of EBL.
[1] Blandford R D and Rees M J 1978 BL Lac Objects 328
[2] Konigl A 1981 Astrophys. J. 243 700
[3] Marscher A P and Gear W K 1985 Astrophys. J. 298 114
[4] Ghisellini G and Maraschi L 1989 Astrophys. J. 340 181
[5] Mannheim K 1993 Astron. Astrophys. 269 67
[6] Aharonian F A 2000 New Astronomy 5 377
[7] Atoyan A M and Dermer C D 2003 Astrophys. J. 586 79
[8] Mücke A et al 2003 Astroparticle Physics 18 593
[9] Maraschi L, Ghisellini G and Celotti A 1992 Astrophys. J. 397 L5
[10] Bloom S D and Marscher A P 1996 Astrophys. J. 461 657
[11] Dermer C D, Schlickeiser R and Mastichiadis A 1992 Astron. Astrophys. 256 L27
[12] Dermer C D and Schlickeiser R 1993 Astrophys. J. 416 458
[13] Sikora M, Begelman M C and Rees M J 1994 Astrophys. J. 421 153
[14] Blandford R D and Levinson A 1995 Astrophys. J. 441 79
[15] Padovani P and Giommi P 1995 Astrophys. J. 444 567
[16] Padovani P and Giommi P 1996 Mon. Not. R. Astron. Soc. 279 526
[17] Fossati G et al 1998 Mon. Not. R. Astron. Soc. 299 433
[18] Albert J et al 2007 Astrophys. J. 666 L17
[19] Anderhub H et al 2009 Astrophys. J. 704 L129
[20] MAGIC Collaboration et al 2008 Science 320 1752
[21] Böttcher M, Reimer A and Marscher A P 2009 Astrophys. J. 703 1168
[22] Stickel M, Fried J W and Kuehr H 1989 Astron. Astrophys. S 80 103
[23] Tateyama C E et al 1999 Astrophys. J. 520 627
[24] Valtaoja E et al 2000 Astrophys. J. 531 744
[25] Gabuzda D C and Gómez J L 2001 Mon. Not. R. Astron. Soc. 320 L49
[26] Tateyama C E and Kingham K A 2004 Astrophys. J. 608 149
[27] Sillanpaa A et al 1988 Astrophys. J. 325 628
[28] Lehto H J and Valtonen M J 1996 Astrophys. J. 460 207
[29] Valtonen M J et al 2008 Nature 452 851
[30] Wu J et al 2006 Astron. J. 132 1256
[31] Fan J H et al 1998 Astron. Astrophys. Suppl. 133 163
[32] Zhang X et al 2007 AJ 133 1995
[33] Zheng Y G et al 2008 Mon. Not. R. Astron. Soc. 385 823
[34] Idesawa E et al 1997 Publ. Astron. Soc. Jpn. 49 631
[35] Isobe N, Tashiro M, Sugiho M and Makishima K 2001 Publ. Astron. Soc. Jpn. 53 79
[36] Seta H et al 2009 Publ. Astron. Soc. Jpn. 61 1011
[37] Chen L et al 2010 Res. Astron. Astrophys. Submitted
[38] Hartman R C et al 1999 Astrophys. J. S 123 79
[39] Abdo A A et al 2009 Astrophys. J. 700 597
[40] Abdo A A et al 2010 Astrophys. J. 715 429
[41] Costamante L and Ghisellini G 2002 Astron. Astrophys. 384 56
[42] Tavecchio F et al 2010 Mon. Not. R. Astron. Soc. 401 1570
[43] Hayashida M et al 2009 arXiv:0907.1343
[44] Abdo A A et al 2009 arXiv:0912.2040
[45] Tavecchio F, Maraschi L and Ghisellini G 1998 Astrophys. J. 509 608
[46] Tavecchio F et al 2001 Astrophys. J. 554 725
[47] Rybicki G 1979 Radiative Processes in Astrophysics (New York: John Wiley & Sonc, Inc.)
[48] Blumenthal G R and Gould R J 1970 Rev. Mod. Phys. 42 237
[49] Lähteenmäki A, Valtaoja E and Wiik K 1999 Astrophys. J. 511 112
[50] Stecker F W, Malkan M A and Scully S T 2006 Astrophys. J. 648 774
[51] Kneiske T M et al 2004 Astron. Astrophys. 413 807
[52] Primack J R, Bullock J S and Somerville R S 2005 High Energy Gamma-Ray Astronomy 745 23
[53] Stecker F W and Scully S T 2009 Astrophys. J. 691 L91
[54] Königl A 1989 BL Lac Objects 334 321
[55] Bai J M 2005 Chin. J. Astron. Astrophys. 5 207
[56] McEnery J E, Moskalenko I V and Ormes J F 2004 Cosmic Gamma-Ray Sources 304 361
[57] Ulrich M H, Maraschi L and Urry C M 1997 Astron. Astrophys. 35 445
[58] Anderhub H et al 2009 Astrophys. J. 705 1624
[59] Valtonen M J et al 2010 Astrophys. J. 709 725