Single-Electron Detachment for Ti-, Fe-, Co-, Ni-, and Cu-, in Collision with Ar
BAI Xue1,2, ZHAO Jun1,2, WEI Bao-Ren1,2, ZHANG Xue-Mei1,2**
1Key Laboratory of Applied Ion Beam Physics (Ministry of Education), Fudan University, Shanghai 200433 2Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433
Single-Electron Detachment for Ti-, Fe-, Co-, Ni-, and Cu-, in Collision with Ar
BAI Xue1,2, ZHAO Jun1,2, WEI Bao-Ren1,2, ZHANG Xue-Mei1,2**
1Key Laboratory of Applied Ion Beam Physics (Ministry of Education), Fudan University, Shanghai 200433 2Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433
摘要By using the micro-channel plate position sensitive detector with the delay-line anode we measure the single electron detachment cross sections for some transition elements in collision with Ar in the energy region 10-30 keV. These single electron detachment cross sections perform as velocity and electron affinity dependences. The experiments are carried out using the growth rate method.
Abstract:By using the micro-channel plate position sensitive detector with the delay-line anode we measure the single electron detachment cross sections for some transition elements in collision with Ar in the energy region 10-30 keV. These single electron detachment cross sections perform as velocity and electron affinity dependences. The experiments are carried out using the growth rate method.
BAI Xue;ZHAO Jun;WEI Bao-Ren;ZHANG Xue-Mei;**. Single-Electron Detachment for Ti-, Fe-, Co-, Ni-, and Cu-, in Collision with Ar[J]. 中国物理快报, 2010, 27(11): 113404-113404.
BAI Xue, ZHAO Jun, WEI Bao-Ren, ZHANG Xue-Mei, **. Single-Electron Detachment for Ti-, Fe-, Co-, Ni-, and Cu-, in Collision with Ar. Chin. Phys. Lett., 2010, 27(11): 113404-113404.
[1] Mati M and Brant M J 1990 Phys. Rev. A 41 1365
[2] Riesselmann K, Anderson L W, Durand L and Anderson C J 1991 Phys. Rev. A 43 5934
[3] Gillespie G H 1980 Phys. Rev. A 22 2430
[4] Tawara H 1978 At. Data Nucl. Data Tables 22 178
[5] Risley J S 1980 Electronic and Atomic Collisions ed Oda N and Takayanagi K (Amsterdam: North-Holland) p 619
[6] Rahman F and Hird B 1986 At. Data Nucl. Data Tables 35 123
[7] Hird B and Rahman F 1984 Phys. Rev. A 30 2940
[8] Hird B and Abbas I A 1985 Phys. Rev. A 31 3974
[9] Allen J S, Fang X D, Sen A, Matulioniene R and Kvale T J 1995 Phys. Rev. A 52 357
[10] Kvale T J, Allen J S, Fang X D, Sen A and Matulioniene R 1995 Phys. Rev. A 51 1351
[11] Andersen L H, Andersen T and Hvelplund P 1997 Adv. At. Mol. Opt. Phys. 38 155
[12] Luna H et al 2001 Phys. Rev. A 63 022705
[13] Zappa F et al 2004 Phys. Rev. A 69 012703
[14] Luna H et al 2001 Phys. Rev. A 63 052716
[15] Zappa F et al 2004 Brazilian J. Phys. 34 3A
[16] Sant'Anna1 M M et al 2009 Plasma Phys. Control. Fusion 51 045007
[17] Sigaud G M 2008 J. Phys. B: At. Mol. Opt. Phys. 41 015205
[18] Jalbert G et al 2008 Phys. Rev. A 77 012722
[19] Huang Y Y et al 2004 Chin. Phys. Lett. 21 1512
[20] Wu S M et al 2007 Atom. Data Nucl. Data Tables 93 575
[21] Wu S M et al 2004 Chin. Phys. Lett. 21 1055
[22] Zhang X M et al 2001 Europhys. Lett. 56 797
[23] Zhang X M et al 2002 Phys. Rev. A 66 032702
[24] Li G W et al 2001 Chin. Phys. Lett. 18 1344
[25] Li G W et al 2001 Jpn. J. Appl. Phys. 40 6131
[26] Zhao J et al 2010 Nucl. Instrum. Methods Phys. Res. A 613 257
[27] Tawara H and Russek A 1973 Rev. Mod. Phys. 45 178
[28] Kvale T J et al 1995 Phys. Rev. A 51 1360
[29] Si H et al 1992 Rev. Sci. Instrum. 63 2472
[30] Yagi S et al 2001 Nucl. Instrum. Methods Phys. Res. B 183 476
[31] Fraser G W 2002 Int. J. Mass Spectrom. 215 13
[32] Furuya K and Hatano Y 2002 Int. J. Mass Spectrometry 218 237
[33] Oberheide J, Wilhelms P and Zimmer M 1997 Meas. Sci. Technol. 8 351
[34] Ishikawa J, Tsuji H and Maekawa T 1989 Vacuum 39 1127