Coherent Population Trapping-Ramsey Interference in Cold Atoms
CHEN Xi1,2,3, YANG Guo-Qing1,2,3, WANG Jin1,2**, ZHAN Ming-Sheng1,2
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 3Graduate University Chinese Academy of Sciences, Beijing 100049
Coherent Population Trapping-Ramsey Interference in Cold Atoms
CHEN Xi1,2,3, YANG Guo-Qing1,2,3, WANG Jin1,2**, ZHAN Ming-Sheng1,2
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 3Graduate University Chinese Academy of Sciences, Beijing 100049
摘要We demonstrate an experimental observation of coherent population trapping-Ramsey interference in cold 87Rb atoms by employing the time-domain separated oscillatory fields' method. The interference fringe with line width of 80 Hz is obtained. We propose a novel method to measure the cold atom number. The measurement is insensitive to the pump beam intensity, the single photon detuning and even the initial state population. We use this method to normalize the interference signal and to improve the signal-to-noise ratio significantly.
Abstract:We demonstrate an experimental observation of coherent population trapping-Ramsey interference in cold 87Rb atoms by employing the time-domain separated oscillatory fields' method. The interference fringe with line width of 80 Hz is obtained. We propose a novel method to measure the cold atom number. The measurement is insensitive to the pump beam intensity, the single photon detuning and even the initial state population. We use this method to normalize the interference signal and to improve the signal-to-noise ratio significantly.
[1] Vanier J 2005 Appl. Phys. B 81 421
[2] Knappe S 2007 Proc. SPIE 6604 660403
[3] Guo T, Deng K, Chen X Z and Wang Z 2009 Appl. Phys. Lett. 94 151108
[4] Du R C, Liu G B, Chen J H, Wang J, Liu C Y and Gu S H 2008 Spectrosc. Spectral Anal. 28 1697
[5] Arimondo E 1997 Philos. Trans. R. Soc. London A 355 2397
[6] Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
[7] Kulin S, Saubamea B, Peik E, Lawall J, Hijmans T W, Leduc M and Cohen-Tannoudji C 1997 Phys. Rev. Lett. 78 4185
[8] Stahler M, Knappe S, Affolderbach C, Kemp W and Wynands R 2001 Europhys. Lett. 54 323
[9] Liu G B, Du R C, Liu C Y and Gu S H 2008 Chin. Phys. Lett. 25 472
[10] Kitching J, Hollberg L, Knappe S and Wynands R 2001 Electron. Lett. 37 1449
[11] Jau Y Y, Miron E, Post A B, Kuzma N N and Happer W 2004 Phys. Rev. Lett. 93 160802
[12] Korsunsky E A and Kosachiov D V 1999 Phys. Rev. A 60 4996
[13] Zanon T, Guerandel S, De Clercq E, Holleville D, Dimarcq N and Clairon A 2005 Phys. Rev. Lett. 94 193002
[14] Gu S H, Behr J A, Groves M N and Dhat D 2003 Opt. Commun. 220 365
[15] Zanon T, Guerandel S, De Clercq E, Dimarcq N and Clairon A 2003 Proceedings of the 2003 Ieee International Frequency Control Symposium Pda Exhibition Jointly with 17th European Frequency and Time Forum (Tampa, Florida, USA 5-8 May 2003) p 49
[16] Xu B M, Chen X, Wang J and Zhan M S 2008 Opt. Commun. 281 5819
[17] Gibble K E, Kasapi S and Chu S 1992 Opt. Lett. 17 526
[18] Chen Y C, Liao Y A, Hsu L and Yu I A 2001 Phys. Rev. A 6403 031401