摘要By decomposing SU(2) gauge potential in four-dimensional Euclidean SU(2) Yang--Mills theory in a new way, we find that the instanton number related to the isospin defects of a doublet order parameter can be topologically quantized by the Hopf index and Brouwer degree. It is also shown that the instanton number is just the sum of the topological charges of the isospin defects in the non-trivial sector of Yang--Mills theory.
Abstract:By decomposing SU(2) gauge potential in four-dimensional Euclidean SU(2) Yang--Mills theory in a new way, we find that the instanton number related to the isospin defects of a doublet order parameter can be topologically quantized by the Hopf index and Brouwer degree. It is also shown that the instanton number is just the sum of the topological charges of the isospin defects in the non-trivial sector of Yang--Mills theory.
[1]Belavin A, Polyakov A, Shvarts A and Tryupkin Yu 1975 Phys. Lett. B 59 85 [2]Yang K Y 1994 Phys. Rev. D 49 5491 [3]Fukushima M, Suganuma H and Toki H 1999 Phys. Rev. D 60 094504 [4] Cavaglia M, de Alfaro V and de Felice F 1994 Phys.Rev. D 49 6493 [5] $'$t Hooft G 1976 Phys. Rev. Lett. 37 8 $'$t Hooft G 1976 Phys. Rev. D 14 3432 [6]Shuryak E and Verbaarschot J 1990 Nucl. Phys. B 341 1 [7]Diakonov D hep-ph/9602375 [8] Schafer T and Shuryak E 1998 Rev. Mod. Phys. 70 323 [9] Rubakov V A 1985 Nucl. Phys. B 256 509 [10]Cho Y M hep-th/9906198 [11]Faddeev L and Niemi A J hep-th/9907180 [12]Faddeev L and Niemi A J 1999 Phys. Rev. Lett. 82 1624 [13] Ford C, Tok T and Wipf A 1999 Phys. Lett. B 456 155 [14] $'$t Hooft G 1979 Nucl. Phys. B 153 141 [15] Polyakov A 1977 Nucl. Phys. B 120 429 [16]Lee K 1991 Phys. Rev. Lett. 66 553 [17] Dunne G V hep-th/9902115 [18] Nash S and Sen S 1983 Topology and Geometry ofPhysicists (London: Academic) [19] Chern S S and Simons J 1974 Ann. Math. 99 48 [20] Goursat E 1904 A Course in Mathematical Analysistranslated by Hedrick E R (New York: Dover) vol I [21] Schouten J A 1951 Tensor Analysis for Physicists(Oxford: Clarendon) [22] Hopf H 1929 Math. Ann. 96 209