摘要The Ising or Potts models of ferromagnetism have been widely used to describe locally interacting social or economic systems. We consider a related model, introduced by Sznajd to describe the evolution of consensus in the scale-free networks with the tunable strength (noted by Q) of community structure. In the Sznajd model, the opinion or state of any spins can only be changed by the influence of neighbouring pairs of similar connection spins. Such pairs can polarize their neighbours. Using asynchronous updating, it is found that the smaller the community strength Q, the larger the slope of the exponential relaxation time distribution. Then the effect of the initial up-spin concentration p as a function of the final all up probability E is investigated by taking different initialization strategies, the random node-chosen initialization strategy has no difference under different community strengths, while the strategies of community node-chosen initialization and hub node-chosen initialization are different in final probability under different Q, and the latter one is more effective in reaching final state.
Abstract:The Ising or Potts models of ferromagnetism have been widely used to describe locally interacting social or economic systems. We consider a related model, introduced by Sznajd to describe the evolution of consensus in the scale-free networks with the tunable strength (noted by Q) of community structure. In the Sznajd model, the opinion or state of any spins can only be changed by the influence of neighbouring pairs of similar connection spins. Such pairs can polarize their neighbours. Using asynchronous updating, it is found that the smaller the community strength Q, the larger the slope of the exponential relaxation time distribution. Then the effect of the initial up-spin concentration p as a function of the final all up probability E is investigated by taking different initialization strategies, the random node-chosen initialization strategy has no difference under different community strengths, while the strategies of community node-chosen initialization and hub node-chosen initialization are different in final probability under different Q, and the latter one is more effective in reaching final state.
WANG Ru;CHI Li-Ping;CAI Xu. Opinion Dynamics on Complex Networks with Communities[J]. 中国物理快报, 2008, 25(4): 1502-1505.
WANG Ru, CHI Li-Ping, CAI Xu. Opinion Dynamics on Complex Networks with Communities. Chin. Phys. Lett., 2008, 25(4): 1502-1505.
Chang Y F and Cai X 2007 Chin. Phys. Lett. 24 2430 [2] Krapivsky P L and Redner S 2003 Phys. Rev. Lett. 90 238701 [3] Chen P and Redner S 2005 Phys. Rev. E 71036101 Galam S 2004 Physica A 333 453 [4] Schwammle V, Gonzalez M C, Moreira A A, Andrade J S andHerrmann H J 2007 Phys. Rev. E 75 066108 Vartolozzi M, Leinweber D B and Thomas A W 2005 Phys.Rev. E 72 046113 [5] Hegselmann R and Krause U 2002 J. Art. Soc. SocialSimul. 5 3 Deffuant G, Neau D, Amblard F, Weisbuch G 2000 Adv.Complex Systems 3 87 [6] Kenah E and Robins J M 2007 Phys. Rev. E 76036113 [7] Vazquez A 2006 Phys. Rev. E 74 056101 [8] Tang C L, Lin B Y, Wang W X, Hu M B and Wang B H 2007 Phys. Rev. E 75 027101 [9] Sznajd-Weron K and Sznajd J 2000 Int. J. Mod. Phys.C 11 1157 [10] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U2006 Phys. Rep. 424 175 Sznajd-Weron K 2005 Acta Phys. Pol. B 36 1001 [11] Woloszyn M, Stauffer D and kulakowski K 2007 Physica A 378 453 [12] Tracieso G and da Costa L F 2006 Phys. Rev. E 74 036112 Bernardes A T, Stauffer D and Kertesz J 2002 Eur. Phys.J. B 25 123 [13] Sznajd-Weron K and Krupa S 2006 Phys. Rev. E 74 031109 Sousa A O and Sanchez J R 2006 Physica A 361 319 [14] Tu Y S, Sousa A O, K L J and Liu M R 2005 Int. J.Mod. Phys. C 17 7 [15] Slanina F and Lavieka H 2003 Eur. Phys. J. B 35 279 [16] Watts D J and Strogatz S H 1998 Nature 393440 Newman M E J 2003 SIAM Rev. 45 167 Palla G, Derenyi I, Farkas I and Vicsek T 2005 Nature 435 814 [17] Wang R and Cai X 2005 Chin. Phys. Lett. 222715 [18] Zhou Y Z, Liu Z H and Zhu J 2007 Chin. Phys. Lett. 24 581 [19] Palla G, Barabasi A L and Vicsek T 2007 Nature 446 7136 Girvan M and Newman M E J 2002 Proc. Natl. Acad. Sci.U.S.A. 99 7821 Newman M E J and Girvan M 2004 Phys. Rev. E 69026113 Gfeller D, Chappelier J C and Rios P D L 2005 Phys.Rev. E 72 056135 [20] Lambiotte R, Ausloos M and Holyst J A 2007 Phys.Rev. E 75 030101 [21] Lambiotte R and Ausloos M 2007 J. Stat. Mech. 8 08026 [22] Barabasi A L and Albert R 1999 Science 286509 [23] Toivonen R, Onnela J P, Saramaki J, Hybonen J and Kadki K2006 Physica A 371 851 [24] Xie Z, Li X and Wang X F 207 Physica A 384725 [25] Noh J D, Jeong H C, Ahn Y Y and Heong H 2005 Phys.Rev. E 71 036131 [26] Xuan Q, Li Y and Wu T J 2006 Phys. Rev. E 73036105 [27] Yan G, Fu Z Q, Ren J and Wang W X 2007 Phys. Rev. E 75 016108 [28] Barabasi A L, Albert R and Heong H 1999 Physica A 272 173 [29] Dorogovtsev S N, Mendes J F F and Samukhin A N 2000 Phys. Rev. Lett. 85 4633 [30] Krapivsky P L, Redner S and Leyvranz F 2000 Phys.Rev. Lett. 85 4629 [31] Newman M E H and Girban M 2004 Phys. Rev. E 69 026113 [32] Kashtan N and Alon U 2005 Proc. Natl. Acad. Sci.U.S.A. 102 13773 [33] Ablert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47 Dorogovtesev S N and Mendes J F F 2002 Adv. Phys. 51 1079 [34] Krupa S and Sznajd-Weron K 2005 Int. J. Mod. Phys.C 16 1771