Exploring Scaling Laws of Valence Neutron Distributions for Medium Nuclei
GUO Yan-Qing1, REN Zhong-Zhou2,3
1Department of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041 2Department of Physics, Nanjing University, Nanjing 210093 3Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator at Lanzhou, Lanzhou 730000
Exploring Scaling Laws of Valence Neutron Distributions for Medium Nuclei
GUO Yan-Qing1, REN Zhong-Zhou2,3
1Department of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041 2Department of Physics, Nanjing University, Nanjing 210093 3Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator at Lanzhou, Lanzhou 730000
摘要The root-mean-square radii of the valence neutron distributions for many nuclei in He-Mo mass range are calculated in the framework of the single-particle potential model. The scaling laws of valence neutron distributions are obtained by analyzing the relations between the radii and the binding energies of the valence neutrons. Based on these scaling laws, the necessary conditions for the occurrence of neuron halos in 2s1/2, 1p3/2, 1p1/2, 2p3/2, 2p1/2, 1d5/2 and 1d3/2 states are deduced, respectively. The derived quantitative conditions for halo occurrence can provide reference for the searching of neutron halos up to medium nuclei.
Abstract:The root-mean-square radii of the valence neutron distributions for many nuclei in He-Mo mass range are calculated in the framework of the single-particle potential model. The scaling laws of valence neutron distributions are obtained by analyzing the relations between the radii and the binding energies of the valence neutrons. Based on these scaling laws, the necessary conditions for the occurrence of neuron halos in 2s1/2, 1p3/2, 1p1/2, 2p3/2, 2p1/2, 1d5/2 and 1d3/2 states are deduced, respectively. The derived quantitative conditions for halo occurrence can provide reference for the searching of neutron halos up to medium nuclei.
[1] Tanihata I, Hamagaki H, Hashimoto O et al 1985 Phys. Rev. Lett. 55 2676
[2] Pei J C, Xu F R and Stevenson P D 2006 Nucl. Phys. A 765 29
[3] Guo Y Q and Ren Z Z 2007 Chin. Phys. Lett. 24 652
[4] Guo Y Q, Ren Z Z and Chen Y Q 2008 Commun. Theor. Phys. 50 1396
[5] Ren Z Z et al 1997 Z. Phys. A 357 137
[6] Zhao Y L, Ma Z Y, Chen B Q and Shen W Q 2003 Chin. Phys. Lett. 20 53
[7] Fang D Q, Shen W Q, Feng J et al 2000 Phys. Rev. C 61 064311
[8] Wang J, Ye Y L, Jiang D X et al 2005 Chin. Phys. Lett. 22 1370
[9] Liu J Y, Xiao G Q, Zuo W and Lee X G 2006 Chin. Phys. Lett. 23 2710
[10] Liang Y J, Li Y S, Liu Z H and Zhou H Y 2009 Chin. Phys. Lett. 26 032102
[11] Dong T K and Ren Z Z 2008 Chin. Phys. Lett. 25 2425
[12] Hansen P G and Jensen A S 1995 Annu. Rev. Nucl. Part. Sci. 45 591
[13] Riisager K, Jensen A S and Møller P 1992 Nucl. Phys. A 548 393
[14] Fedorov D V, Jensen A S and Riisager K 1994 Phys. Rev. C 49 210
Fedorov D V, Jensen A S and Riisager K 1994 Phys. Rev. C 50 2372
Fedorov D V, Jensen A S and Riisager K 1993 Phys. Lett. B 312 1
[15] Jensen A S and Riisager K 2000 Phys. Lett. B 480 39
[16] Riisager K, Fedorov D V and Jensen A S 2000 Europhys. Lett. 49 547
[17] Liu Z H, Zhang X Z and Zhang H Q 2003 Phys. Rev. C 68 024305
[18] Liu Z H, Zhang X Z and Zhang H Q 2003 Chin. Phys. Lett. 20 1017
[19] Audi G et al 2003 Nucl. Phys. A 729 3
Audi G et al 2003 Nucl. Phys. A 729 337
[20] Satchler G R 1983 Direct Nuclear Reactions (New York: Oxford University Press) pp 455-460 713
[21] Bohr A and Mottelson B R 1998 Nuclear Structure (Singapore: World Scientific) vol 1 pp 148 235-240
[22] Lin C J, Zhang H Q, Liu Z H, Wu Y W, Yang F and Ruan M 2002 Phys. Rev. C 66 067302
[23] Hamamoto I and Zhang X Z 1998 Phys. Rev. C 58 3388