摘要The production of the intermediate mass dileptons originating from the annihilation and Compton scattering of the jets and high energy photons (resolved photons) passing through the quark-gluon plasma is calculated. The contribution of the dilepton yield due to the jet-plasma and high energy photon-plasma interaction is pronounced compared to the thermal and Drell-Yan dilepton spectrum at intermediate mass. The ordinary spectrum of thermal and Drell-Yan processes is enhanced by the jet and photon-plasma mechanism. The numerical results match to the PHENIX data accurately in the intermediate mass region for Au-Au 200 GeV/A collisions at RHIC.
Abstract:The production of the intermediate mass dileptons originating from the annihilation and Compton scattering of the jets and high energy photons (resolved photons) passing through the quark-gluon plasma is calculated. The contribution of the dilepton yield due to the jet-plasma and high energy photon-plasma interaction is pronounced compared to the thermal and Drell-Yan dilepton spectrum at intermediate mass. The ordinary spectrum of thermal and Drell-Yan processes is enhanced by the jet and photon-plasma mechanism. The numerical results match to the PHENIX data accurately in the intermediate mass region for Au-Au 200 GeV/A collisions at RHIC.
FU Yong-Ping;LI Yun-De
. Intermediate Mass Dileptons from the Passage of Jets and High Energy Photons through Quark-Gluon Plasma[J]. 中国物理快报, 2010, 27(10): 101202-101202.
FU Yong-Ping, LI Yun-De
. Intermediate Mass Dileptons from the Passage of Jets and High Energy Photons through Quark-Gluon Plasma. Chin. Phys. Lett., 2010, 27(10): 101202-101202.
[1] Kajantie K, Kapusta J, Mclerran L and Mekjian A 1986 Phys. Rev. D 34 2746
[2] Ruuskanen P V 1992 Nucl. Phys. A 544 169
[3] Rapp R and Shuryak E 2000 Phys. Lett. B 473 13
Zhang Q H hep-ph/0106242
[4] Shuryak E and Xiong L 1993 Phys. Rev. Lett. 70 2241
[5] Hung C M and Shuryak E 1998 Phys. Rev. C 57 1891
[6] Shuryak E V and Zahed I 2004 Phys. Rev. C 70 021901
[7] Lévai P, Müller B and Wang X N 1995 Phys. Rev. C 51 3326
[8] Li G Q and Gale C 1998 Phys. Rev. Lett. 81 1572
[9] Wong C Y 1984 Phys. Rev. D 30 961
[10] Combridge B L, Kripfganz J and Ranft J 1977 Phys. Lett. B 70 234
[11] Bjorken J D 1983 Phys. Rev. D 27 140
Hasenfratz P, Horgan R R, Kuti J and Richard J M 1980 Phys. Lett. B 95 299
[12] Field R D 1989 Applications of Perturbative QCD (New York: Addison-Wesley Publishing Company) pp 186-195
[13] Agakishiev G et al 1995 Phys. Rev. Lett. 75 1272
Agakishiev G 2007 Phys. Rev. Lett. 98 052302
[14] Arnaldi R et al 2006 Phys. Rev. Lett. 96 162302
[15] Ozawa K et al 2001 Phys. Rev. Lett. 86 5019
[16] Adare A et al 2007 Phys. Rev. Lett. 98 232301
[17] Adler S S et al 2007 Phys. Rev. C 75 024909
[18] Toia A et al 2007 Eur. Phys. J. C 49 243
Toia A et al 2006 Nucl. Phys. A 774 743
Afanasiev S et al arXiv:0706.3034v1 [nucl-ex]
Drees A arXiv:0909.4976v1 [nucl-ex]
[19] Karsch F 2002 Nucl. Phys. A 698 199
[20] Hung C M and Shuryak E V 1997 Phys. Rev. C 56 453
[21] Kaempfer B, Koch P and Pavlenko O P 1994 Phys. Rev. C 49 1132
[22] Song C 1993 Phys. Rev. C 47 2861
[23] Srivastava D K and Sinha B 1994 Phys. Rev. Lett. 73 2421
[24] Gale C and Kapusta J I 1991 Nucl. Phys. B 357 65
[25] Gale C and Lichard P 1994 Phys. Rev. D 49 3338
[26] Srivastava D K, Sinha R and Gale C 1996 Phys. Rev. C 53 567
[27] Turbide S, Gale C, Jeon S and Moore G D 2005 Phys. Rev. C 72 014906
[28] Srivastava D K, Gale C and Fries R J 2003 Phys. Rev. C 67 034903
[29] Fries R J, Müller B and Srivastava D K 2003 Phys. Rev. Lett. 90 132301
Fries R J, Müller B and Srivastava D K 2005 Phys. Rev. C 72 014902
[30] Glück M, Reya E and Vogt A 1992 Z. Phys. C 53 127
Glück M, Reya E and Schienbein I arXiv:hep-ph/9903337
[31] Owens J F 1987 Rev. Mod. Phys. 59 465
[32] Dress M, Godbole R M, Nowakowski M and Rindani S D 1994 Phys. Rev. D 50 2335
Glück M, Reya E and Schienbein I arXiv:hep-ph/9903337v2
[33] Qiu J 1987 Nucl. Phys. B 291 746