Single-Qubit Operations for Singlet-Triplet Qubits in an Isolated Double-Well with Fixed Tunneling
QIAN Jun1, QIAN Yong2, KE Min1, YAN Bo1, CHENG Feng1, ZHOU Shu-Yu1, WANG Yu-Zhu1
1Key Laboratory for Quantum Optics, Center of Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 2Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Single-Qubit Operations for Singlet-Triplet Qubits in an Isolated Double-Well with Fixed Tunneling
QIAN Jun1, QIAN Yong2, KE Min1, YAN Bo1, CHENG Feng1, ZHOU Shu-Yu1, WANG Yu-Zhu1
1Key Laboratory for Quantum Optics, Center of Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 2Department of Modern Physics, University of Science and Technology of China, Hefei 230026
摘要We propose a scheme to implement single-qubit operations for singlet-triplet qubits located in an isolated double-well potential with fixed inter-site tunneling when superexchange interactions predominate. Arbitrary single-qubit gates can be realized by a sequence composed of two elementary operations which can be switched between different parameter regimes by adjusting slightly the relative energy bias of trapped atoms in each sub-well site. The experimental feasibility of the strategy and the fidelity of basic rotation operations are also analyzed.
Abstract:We propose a scheme to implement single-qubit operations for singlet-triplet qubits located in an isolated double-well potential with fixed inter-site tunneling when superexchange interactions predominate. Arbitrary single-qubit gates can be realized by a sequence composed of two elementary operations which can be switched between different parameter regimes by adjusting slightly the relative energy bias of trapped atoms in each sub-well site. The experimental feasibility of the strategy and the fidelity of basic rotation operations are also analyzed.
[1] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[2] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[3] Anderlini M, Sebby-Strabley J, Kruse J, Porto J V and Phillips W D 2006 J. Phys. B 39 S199
[4] Fölling S, Trotzky S, Cheinet P, Feld M, Saers R, Widera A, Müller T and Bloch I 2007 Nature 448 1029
[5] Hayes D, Julienne P S and Deutsch I 2007 Phys. Rev. Lett. 98 070501
[6] Anderlini M et al 2007 Nature 448 452
[7] Rey A M, Gritsev V, Bloch I, Demler E and Lukin M D 2007 Phys. Rev. Lett. 99 140601
[8] Trotzky S, Cheinet P et al 2008 Science 319 295
[9] Cheinet P et al 2008 Phys. Rev. Lett. 101 090404
[10] Vaucher B, Nunnenkamp A and Jaksch D 2008 New J. Phys. 10 023005
[11] Strauch F W, Edwards M, Tiesinga E, Wiliams C and Clark C W 2008 Phys. Rev. A 77 050304(R)
[12] Lee P, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[13] von Stecher J, Demler E, Lukin M D and Rey A M 2010 New J. Phys. 12 055009
[14] Kitaev A 2006 Ann. Phys. 321 2
[15] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
[16] Barmettler P et al 2008 Phys. Rev. A 78 012330
[17] Hanson R and Burkard G 2007 Phys. Rev. Lett. 98 050502
[18] Taylor J M, Engel H A, Dür W, Yacoby A, Marcus C M, Zoller P and Lukin M D 2005 Nat. Phys. 1 177
[19] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
Madelung O 1878 Introduction to Solid-State Theory (Berlin: Springer) p 110
[20] Nielson M A and Chuang I L 2000 Quantum Computation and Quantum Information (London: Cambridge University)
[21] Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J and Krüger P 2005 Nature Phys. 1 57
[22] Beugnon J, Tuchendler C, Marion H, Gaëtan A, Miroshnychenko Y, Sortais Y R P, Lance A M, Jones M P A, Messin G, Browaeys A and Grangier P 2007 Nature Phys. 3 696