JIANG Qing Yun1, LI Sheng2, Thomas F. George3, SUN Xin1
1Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 2Department of Physics, Zhejiang Normal University, Jinhua 310004 3Office of the Chancellor and Center for Nanoscience, Departments of Chemistry & Biochemistry and Physics & Astronomy, University of Missouri-St.Louis, St. Louis, MO 63121, USA
Bipolarons in Organic Electroluminescence
JIANG Qing Yun1, LI Sheng2, Thomas F. George3, SUN Xin1
1Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 2Department of Physics, Zhejiang Normal University, Jinhua 310004 3Office of the Chancellor and Center for Nanoscience, Departments of Chemistry & Biochemistry and Physics & Astronomy, University of Missouri-St.Louis, St. Louis, MO 63121, USA
摘要We investigate the bipolaron channel B++ +B--→BX. The dynamical evolutions and transition probabilities of this bipolaron luminescence channel are studied. It is found that this channel avoids the triplet and is able to enhance the efficiency. We suggest that choosing certain polymers and injection structures, in which B is easily formed, can improve the luminescence efficiency. It is believed that these results will motivate further experimental studies about the function of bipolarons in electroluminescence.
Abstract:We investigate the bipolaron channel B++ +B--→BX. The dynamical evolutions and transition probabilities of this bipolaron luminescence channel are studied. It is found that this channel avoids the triplet and is able to enhance the efficiency. We suggest that choosing certain polymers and injection structures, in which B is easily formed, can improve the luminescence efficiency. It is believed that these results will motivate further experimental studies about the function of bipolarons in electroluminescence.
[1] Tang C W and VanSlyke S A 1987 Appl. Phys. Lett. 51 913
Burroughes J H et al 1990 Nature 347 539
[2] Fernandes M R, Garcia J R, Schultz M S and Nart F C 2005 Thin Solid Films 474 279
Cik G, Sersen F and Dlhan L D 2005 Synth. Met. 151 124
[3] Evans-Kennedy U et al 2004 Macromolecules 37 3630
[4] Holt A L, Leger J M and Carter S A 2005 J. Chem. Phys. 123 044704
[5] Greenham N C et al 1996 Phys. Rev. B 53 13528
[6] Street R A, Salleo A and Chabinyc M L 2003 Phys. Rev. B 68 085316
[7] Bobbert P A et al 2007 Phys. Rev. Lett. 99 216801
[8] Klimov V I, McBranch D W, Barashkov N and Ferraris J 1998 Phys. Rev. B 58 7654
[9] Shakin V A and Abe S 1994 Phys. Rev. B 50 4306
[10] Kuwatagonokami M, peyghambarian N, Meissner K, Fluegel B, Sato Y, Ema K, Shimano R, Mazumdar S, Guo F, Tokohiro T, Ezaki H and Hanamura E 1994 Nature 367 47
[11] Guo F, Chandross M and Mazumdar S 1995 Phys. Rev. Lett. 74 2086
[12] Yu Z G, Fu R T, Wu C Q, Sun X and Nasu K 1995 Phys. Rev. B 52 4849
[13] Heeger A J, Kivelson S, Schrieffer J R and Su W P 1988 Rev. Mod. Phys. 60 781
[14] Baldo M A, O'Brien D F, Thompson M E and Forrest S R 1999 Phys. Rev. B 60 14422
[15] Ho P K H, Kim J S, Burroughes J H, Becker H, Li S F Y, Brown T M, Cacialli F and Friend R H 2000 Nature 404 481
[16] Cao Y, Parker I D, Yu G, Zhang C and Heeger A J 1999 Nature 397 414
[17] Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S and Vardeny Z V 2001 Nature 409 494
[18] Wilson J S, Dhoot A S, Seeley A J A B, Khan M S, Kohler A and Friend R H 2001 Nature 413 828