Thermal Expansion Behavior of Hexagonal ZnS Single-Crystal Nanowires Embedded in Anodized Aluminum Oxide Template
YU Yan-Long1, ZHENG Li-Hui1, XU Xin1, SUN Hong-Yu2**
1Department of Applied Technology, Daqing Petroleum Institute, Qinhuangdao 066004 2Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
Thermal Expansion Behavior of Hexagonal ZnS Single-Crystal Nanowires Embedded in Anodized Aluminum Oxide Template
YU Yan-Long1, ZHENG Li-Hui1, XU Xin1, SUN Hong-Yu2**
1Department of Applied Technology, Daqing Petroleum Institute, Qinhuangdao 066004 2Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
摘要The thermal expansion behavior of semiconductor single-crystal nanowire arrays is of importance for their applications in electronic and optoelectronic nanodevices. We prepare hexagonal ZnS single-crystal nanowire arrays growing along the [110] direction via electrodeposition. The thermal expansion properties of the as-prepared ZnS nanowires have been studied by in situ x-ray diffraction method. The thermal expansion coefficient (TEC) of the ZnS nanowires decreases consistently from room temperature to 225°C where it reaches a minimum value, and then increases rapidly. The average TEC in the studied temperature range is 4.74×10−6/°C, which is smaller than that of the conventional bulk counterpart.
Abstract:The thermal expansion behavior of semiconductor single-crystal nanowire arrays is of importance for their applications in electronic and optoelectronic nanodevices. We prepare hexagonal ZnS single-crystal nanowire arrays growing along the [110] direction via electrodeposition. The thermal expansion properties of the as-prepared ZnS nanowires have been studied by in situ x-ray diffraction method. The thermal expansion coefficient (TEC) of the ZnS nanowires decreases consistently from room temperature to 225°C where it reaches a minimum value, and then increases rapidly. The average TEC in the studied temperature range is 4.74×10−6/°C, which is smaller than that of the conventional bulk counterpart.
[1] Hu J Q, Bando Y, Zhan J H and Golberg D 2004 Angew. Chem. Int. Ed. 43 4606
[2] Fang X S, Bando Y, Ye C H, Shen G Z and Golberg D 2007 J. Phys. Chem. C 111 8469
[3] Shen G Z, Bando Y and Golberg D 2007 Int. J. Nanotechnol. 4 730
[4] Barrelet C J, Wu Y, Bell D C and Lieber C M 2003 J. Am. Chem. Soc. 125 11498
[5] Wang Z L and Song J H 2006 Science 312 242
[6] Wu Y Y and Yang P D 2001 Adv. Mater. 13 520
[7] Wang Y H, Yang J J, Ye C H, Fang X S and Zhang L D 2004 Nanotechnology 15 1437
[8] Wang Y H, Zhao H, Hu Y H, Ye C H and Zhang L D 2007 J. Cryst. Growth 305 8
[9] Li L, Zhang Y, Wang Y W, Huang X H, Li G H and Zhang L D 2005 Appl. Phys. Lett. 87 031912
[10] Zhu Y G, Dou X C, Huang X H, Li L and Li G H 2006 J. Phys. Chem. B 110 26189
[11] Xu X J, Fei G T, Yu W H, Chen L, Zhang L D, Ju X, Hao X P and Wang B Y 2006 Appl. Phys. Lett. 88 211902
[12] Xu X J, Fei G T, Yu W H, Zhang L D, Ju X, Hao X P, Wang D N and Wang B Y 2006 Appl. Phys. Lett. 89 181914
[13] Zhou Y, Fei G T, Cui P, Wu B, Wang B and Zhang L D 2008 Nanotechnology 19 2857111
[14] Lee J Y, Kim D S and Park J 2007 Chem. Mater. 19 4663
[15] Wang Z L 2007 Adv. Mater. 19 889
[16] Law M, Goldberger J and Yang P D 2004 Annu. Rev. Mater. Res. 34 83
[17] Wang Z W, Daemen L L, Zhao Y S, Zha C S, Downs R T, Wang X D, Wang Z L and Hemley R J 2005 Nat. Mater. 4 922
[18] Chen C C, Herhold A B, Johnson C S and Alivisatos A P 1997 Science 276 398
[19] Suyver J F, Wuister S F, Kelly J J and Meijerink A 2001 Nano Lett. 1 429
[20] Duan X F and Lieber C M 2000 Adv. Mater. 12 298
[21] Hsin C L, Hsin C L, He J H, Lee C Y, Wu W W, Yeh P H, Chen L J and Wang Z L 2007 Nano Lett. 7 1799
[22] Masuda H and Fukuda K 1995 Science 268 1466
[23] Xu X J, Fei G T, Yu W H, Wang X W, Chen L and Zhang L D 2006 Nanotechnology 17 426
[24] Saotome T, Ohashi K, Sato T, Maeta H, Haruna K and Ono F 1998 J. Phys.: Condens. Matter 10 1267
[25] Kumar V and Sastry B S R 2001 Cryst. Res. Technol. 36 565
[26] Wang Z Y, Lu Q F, Fang X S, Tian X K and Zhang L D 2006 Adv. Funct. Mater. 16 661
[27] Sarkar J, Khan G G and Basumallick A 2007 Bull. Mater. Sci. 30 271
[28] Zhao W B, Zhu J J and Chen H Y 2004 Scr. Mater. 50 1169
[29] Shan C X, Liu Z and Hark S K 2007 Appl. Phys. Lett. 90 193123
[30] Kuykendall T, Pauzauskie P J, Zhang Y, Goldberger J, Sirbuly D, Denlinger J and Yang P D 2004 Nature Mater. 3 524
[31] Chang M, Cao X L, Xu X J and Zhang L D 2008 Phys. Lett. A 372 273