摘要We present an interrogating technique employing a reformative arrayed waveguide grating without output waveguides in combination with a linear charge coupled device. A simple and effective data processing method called area equalized point is used to improve the system resolution. The simulation results show that the wavelength shift of a fibre Bragg grating with temperature can be precisely measured by this interrogation technique. The temperature accuracy and wavelength resolution of the sensor system are smaller than 0.08°C and 0.8pm, respectively. If the FBG 3dB-bandwidth is 0.2nm with the wavelength spacing between two adjacent FBGs of 1.4nm, the temperature and wavelength errors caused by crosstalk are respectively 0.01°C and 0.1pm.
Abstract:We present an interrogating technique employing a reformative arrayed waveguide grating without output waveguides in combination with a linear charge coupled device. A simple and effective data processing method called area equalized point is used to improve the system resolution. The simulation results show that the wavelength shift of a fibre Bragg grating with temperature can be precisely measured by this interrogation technique. The temperature accuracy and wavelength resolution of the sensor system are smaller than 0.08°C and 0.8pm, respectively. If the FBG 3dB-bandwidth is 0.2nm with the wavelength spacing between two adjacent FBGs of 1.4nm, the temperature and wavelength errors caused by crosstalk are respectively 0.01°C and 0.1pm.
[1] Liang W et al %, Huang Y, Xu Y, Lee R K and Yariv A2005 Appl. Phys. Lett. 86 151122 [2] Fernandez-Valdivielso C, Mat\'\i as I R and Arregui F J 2002 Sensors Actuators A 101 107 [3] Kojima S et al %, Hongo A, Komatsuzaki S and Takeda N2006 Proc. SPIE 5384 241 [4] Zhao Y, Meng Q Y and Chen K 2006 Sensors Actuators A 126 112 [5] Gao H W et al %, Li H M, Liu B, Zhang H, Luo J H, Cao Y, Yuan%S Z, Zhang W G, Kai G Y and Dong X Y2005 Opt. Commun. 251 361 [6] Huang R et al %, Zhou Y W, Cai H W, Qu R H and Fang Z J2004 Opt. Commun. 229 197 [7] Bjerkan L et al %, Johannessen K and Guo X X1998 Opt. Laser Technol. 30 417 [8] Sun J Q et al %, Yuan X H, Zhang X L and Huang D X2006 Opt. Commun. 267 177 [9] Lin S T and Cheng Y R 2006 Opt. Commun. 266 50 [10] Todd M D et al %, Johnson G A and Althouse B L2001 Meas. Sci. Technol. 12 771 [11] Lo Y L et al %, Chue B R and Xu S H2004 Opt. Commun. 230 287 [12] Yuan L B 2004 Opt. Laser Technol. 36 365 [13] Nahal F E and Mears R J 2003 Opt. Eng. 42 867 [14] Toda H et al %, Yamashita T, Kitayama K I and Kuri T2002 Proc. SPIE 4906 99 [15] David C C et al %N, David J W and Pechstedt R D2004 Proc. SPIE 5459 101 [16] Robertson D et al %, Niewczas P and McDonald J R2005 Proc. SPIE 5855 844 [17] Sano Y et al %, Hirayama N and Yoshino T2003 Proc. SPIE 4987 197 [18] Su H and Huang X G 2007 Opt. Commun. 275 196 [19] Fender A et al %, Euan J. R, Robert R J M, William N M, James%S B, Andrew J M, Julian D C J, Zhao DH, Zhang L, Bennion I, McCulloch S%and Ben J S J2006 Appl. Opt. 45 9041 [20] Sano Y and Yoshino T 2003 J. Lightwave Technol. 21132 [21] Xiao G Z et al %, Zhao P, Sun F G, Lu Z G, Zhang Z Y and Grover C P2004 Opt. Lett. 29 2222 [22] Chen Q H, Huang X G and Xu W C 2007 Opt. Commun. 269 89