摘要We consider a composite system of two remote mesoscopic Josephson junctions interacting locally with a two-mode non-classical cavity field and investigate entanglement transfer from a bipartite continuous-variable (CV) system to a pair of localized mesoscopic Josephson junctions. We obtain analytically the time-dependent characteristic functions in the Wigner representation for the two CV subsystems, where two cases are considered for the zero and finite temperatures. Furthermore, we analyse the influences of the temperature on the period recovery of the entanglement.
Abstract:We consider a composite system of two remote mesoscopic Josephson junctions interacting locally with a two-mode non-classical cavity field and investigate entanglement transfer from a bipartite continuous-variable (CV) system to a pair of localized mesoscopic Josephson junctions. We obtain analytically the time-dependent characteristic functions in the Wigner representation for the two CV subsystems, where two cases are considered for the zero and finite temperatures. Furthermore, we analyse the influences of the temperature on the period recovery of the entanglement.
CHANG Ping;SHAO Bin;WANG Zhao-Ming;ZOU Jian. Continuous-Variable Entanglement Transfer from Cavity Field to Two Mesoscopic Josephson Junctions[J]. 中国物理快报, 2008, 25(3): 1098-1101.
CHANG Ping, SHAO Bin, WANG Zhao-Ming, ZOU Jian. Continuous-Variable Entanglement Transfer from Cavity Field to Two Mesoscopic Josephson Junctions. Chin. Phys. Lett., 2008, 25(3): 1098-1101.
[1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum information (Cambridge: Cambridge University Press) [2]Bennett C H et al 1993 Phys. Rev. Lett. 70 1895 [3]Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 [4]Ekert A K 1991 Phys. Rev. Lett. 67 661 [5]Simon R 2000 Phys. Rev. Lett. 84 2726 Duan L M et al 2000 Phys. Rev. Lett. 84 2722 [6]Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 Plenio M B 2005 Phys. Rev. Lett. 95 090503 [7]Giedke G et al 2003 Phys. Rev. Lett. 91 107901 [8]Josse V et al 2004 Phys. Rev. Lett. 92 123601 [9]Braunstein S L and Pati A K 2003 Quantum Information Theorywith Continuous Variables (Dordrecht: Kluwer) [10]Paternostro M et al 2004 Phys. Rev. B 69 214502 Paternostro M et al 2004 Phys. Rev. Lett. 92 197901 Paternostro M et al 2004 Phys. Rev. A 70 022320 [11]Zou J et al 2006 Phys. Rev. A 73 042319 [12]Lee J et al 2006 Phys. Rev. Lett. 96 080501 Zhou L and Yang G H 2006 J. Phys. B 39 5143 [13]Kraus B and Cirac J I 2004 Phys. Rev. Lett. 92 013602 Retzker A et al 2005 Phys. Rev. Lett. 94 050504 [14]Serafini A 2006 Phys. Rev. A 73 022312 [15]Julsgaard B et al 2004 Nature 432 482 Hald J et al 2002 J. Mod. Opt. 49 1739 [16]Vourdas A 1994 Phys. Rev. B 49 12040 Vourdas A 1996 Z. Phys. B 100 455 [17]Shao B et al 1998 Phys. Lett. A 242 105 Shao B et al 1999 Phys. Rev. B 60 9714 [18]Zou J et al 1997 Phys. Lett. A 231 123 Zou J et al 1997 Phys. Rev. B 56 14116 [19]Chang P et al 2006 Phys. Lett. A 354 48 Zeng T H et al 2006 Chin. Phys. Lett. 23 2644 [20]Vourdas A 1997 Z. Phys. B 102 43 [21]Barnett S M and Radmore P M 1997 Methods in TheoreticalQuantum Optics (Oxford: Clarendon) Scully M O and Zubairy M S 1997 Quantum Optics(Cambridge: Cambridge University Press) chap 14 [22]Loudon R and Knight P L 1987 J. Mod. Opt. 34 709 [23]Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404 [24] Roszak K and Machnikowski P 2006 Phys. Rev. A 73 022313 Ficek Z and Tanas R 2006 Phys. Rev. A 74 024304 Liu R F and Chen C C 2006 Phys. Rev. A 74 024102 [25] Zhang G F and Chen A Y, quant-ph/0703068 Cui H T et al 2007 Phys. Lett. A 365 44 Ting Yu 2007 Phys. Lett. A 361 28