We present two methods to solve the equation of motion of the cavityless optomechanical system and obtain an explicit formula of the covariance matrix of the evolved state when the initial state is Gaussian. We study the entanglement dynamics of this system initially in the vacuum state. It is shown that bipartite entanglement behaves in a periodic manner. In particular, we can easily generate a genuine three-mode continuous-variable entanglement.
We present two methods to solve the equation of motion of the cavityless optomechanical system and obtain an explicit formula of the covariance matrix of the evolved state when the initial state is Gaussian. We study the entanglement dynamics of this system initially in the vacuum state. It is shown that bipartite entanglement behaves in a periodic manner. In particular, we can easily generate a genuine three-mode continuous-variable entanglement.
[1] Feng Z B and Yan R Y 2010 Chin. Phys. Lett. 27 010301 [2] Zhan Y B, Zhang Q Y, Wang Y W and Ma P C 2010 Chin. Phys. Lett. 27 010307 [3] Dong P, Zhang G and Cao Z L 2010 Chin. Phys. Lett. 27 030301 [4] Li J B, Cheng M T, Yang Z J and Hao Z H 2009 Chin. Phys. Lett. 26 113202 [5] Dugic M and Jeknic-Dugic J 2009 Chin. Phys. Lett. 26 090306 [6] Pirandola S, Mancini S, Vitali D and Tombesi P 2003 Phys. Rev. A 68 062317 [7] Fermani R, Mancini S and Tombesi P 2004 Phys. Rev. A 70 045801 [8] Adesso G, Ericsson M and Illuminati F 2007 Phys. Rev. A 76 022315 [9] Barnett S M and Radmore P M 1997 Methods in Theoretical Quantum Optics (Oxford: Clarendon) [10] Adesso G and Illuminati F 2007 J. Phys. A 40 7821 [11] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722