Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei
YAO Jiang-Ming1, LU Hong-Feng2, Hillhouse Greg3, MENG Jie 1,2,3,4
1School of Phyics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 1008712College of Science, Chinese Agriculture University, Beijing 1000833Department of Physics, University of Stellenbosch, Stellenbosch, South Africa4Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 1000805Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000
Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei
YAO Jiang-Ming1; LU Hong-Feng2;Hillhouse Greg3;MENG Jie 1,2,3,4
1School of Phyics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 1008712College of Science, Chinese Agriculture University, Beijing 1000833Department of Physics, University of Stellenbosch, Stellenbosch, South Africa4Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 1000805Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000
摘要Effects of core polarization and tensor coupling on the magnetic moments in 13ΛC, 17Λ, and 41ΛCa Λ-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling. The Λ tensor potential reduces the spin--orbit splitting of pΛ states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the Λ tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for pΛ states from the Schmidt values are found to increase with nuclear mass number.
Abstract:Effects of core polarization and tensor coupling on the magnetic moments in 13ΛC, 17Λ, and 41ΛCa Λ-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling. The Λ tensor potential reduces the spin--orbit splitting of pΛ states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the Λ tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for pΛ states from the Schmidt values are found to increase with nuclear mass number.
(Forces in hadronic systems and effective interactions)
引用本文:
YAO Jiang-Ming; LU Hong-Feng;Hillhouse Greg;MENG Jie;;. Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei[J]. 中国物理快报, 2008, 25(5): 1629-1632.
YAO Jiang-Ming, LU Hong-Feng, Hillhouse Greg, MENG Jie, ,. Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei. Chin. Phys. Lett., 2008, 25(5): 1629-1632.
[1] Danysz M and Pniewski J 1953 Bull. Acad. Pol. Sci.III 1 42 Danysz M and Pniewski J 1953 Phil. Mag. 44 348 [2] Chrien R E and Dover C B 1989 Ann. Rev. Nucl. Part. Sci.39 113 [3] Dover C B, Millener D J and Gal A 1989 Phys. Rep. 184 1 [4] Bando H, Motoba T and \v Zofka J 1990 Int. J. Mod.Phys. A 5 4021 [5] Meng J and L\"{u H F 2004 Prog. Natural Sci. 14841 (in Chinese) [6] Hashimoto O and Tamura H 2006 Prog. Part. Nucl. Phys.57 564 [7] Motoba T et al 1985 Prog. Theor. Phys. Suppl. 81 42 [8] Tanaka Y 1989 Prog. Theor. Phys. 82 96 Tanaka Y 1989 Phys. Lett. B 227 195 Tanaka Y 1993 Int. J. Mod. Phys. E 2 423 [9] Saito K, Oka M and Suzuki T 1997 Nucl. Phys. A 625 95 [10] Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1 [11]Reinhard P G 1989 Rep. Prog. Phys. 52 439 [12] Ring P 1996 Prog. Part. Phys. Vol. 37 193 [13] Vretenar D, Afanasjev A V, Lalazissis G A and Ring P 2005 Phys. Rep. 409 101 [14] Meng J, Toki H, Zhou S G, Zhang S Q, Long W H and Geng L S2006 Prog. Part. Nucl. Phys. 57 470 [15] Hofmann U and Ring P 1988 Phys. Lett. B214 307 [16]Furnstahl R J and Serot B D 1987 Nucl. Phys. A 468 539 [17] Yao J M, Chen H and Meng J 2006 Phys. Rev. C 74 024307 [18] Boguta J and Bohrmann S 1981 Phys. Lett. B 102 93 [19] Rufa M, St\"{ocker H, Maruhn J, Reinhard P G and Greiner W1987 J. Phys. G 13 143 [20] Mare\v{s J and Jennings B K 1994 Phys. Rev. C 49 2472 [21] Vretenar D, P\"{oschl W, Lalazissis G A and Ring P 1998 Phys. Rev. C 57 R1060 [22] L\"{u H F, Meng J, Zhang S Q and Zhou S G 2003 Eur. Phys.J. A 17 19 [23] McNeil J A, Amado R D, Horowitz C J, Oka M, Shepard J Rand Sparrow D A 1986 Phys. Rev. C 34 746 [24] Cohen J and Furnstahl R J 1987 Phys. Rev. C 35 2231 [25] Mares J and Zofka J 1990 Phys. Lett. B 249 181 [26] Jennings B K 1990 Phys. Lett. B 246 325 [27] Gattone A O, Chiapparini M and Izquierdo E D1991 Phys. Rev. C 44 548 [28] Noble J V 1980 Phys. Lett. B 89 325 [29] Long W H, Giai N V and Meng J 2006 Phys. Lett. B 640 150 [30] Bjorken J D and Drell S D 1964 Relativistic QuantumMechanics (New York: McGraw Hill) [31] Yao J M, Mei H, Meng J and Chen H 2006 HighEnergy Phys. Nucl. Phys. Suppl. I$\!$I 30 42 [32] Long W H, Meng J, Giai N V and Zhou S G 2004 Phys. Rev.C 69 034319 [33] Cohen J and Weber H J 1991 Phys. Rev. C 44 1181 [34] Horowitz C J and Serot B D 1981 Nucl. Phys. A 368 503 [35] Ajimura S et al 2001 Phys. Rev. Lett. 86 4255