Detailed Characteristics of Expansion Velocity of Si from Laser Ablated SiC
CHEN Ming1, LIU Xiang-Dong1, SUN Yu-Ming2, YANG Xin-Mei1, ZHAO Ming-Wen1, QI Huan-Jun2, CHEN Xiu-Fang3, XU Xian-Gang3
1School of Physics, Shandong University, Jinan 2501002School of Information Science and Engineering, Shandong University, Jinan 2501003State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100
Detailed Characteristics of Expansion Velocity of Si from Laser Ablated SiC
1School of Physics, Shandong University, Jinan 2501002School of Information Science and Engineering, Shandong University, Jinan 2501003State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100
摘要Optical emission of plasma is used to investigate the characteristics of dynamics distribution in the plume generated by ablation of a SiC sample using Nd:YAG laser. The plume expansion dynamics is characterized by time-of-flight measurement. We find that the profiles of Si (I) (390.55nm) split into two components and the Si (II) (634.71nm) spectra show two distinct expansion dynamics regions. The time-of-flight measurement of Si(II) (634.71nm) under different laser irradiance conditions, from 0.236GW/cm2 to 1.667GW/cm2, are presented and discussed.
Abstract:Optical emission of plasma is used to investigate the characteristics of dynamics distribution in the plume generated by ablation of a SiC sample using Nd:YAG laser. The plume expansion dynamics is characterized by time-of-flight measurement. We find that the profiles of Si (I) (390.55nm) split into two components and the Si (II) (634.71nm) spectra show two distinct expansion dynamics regions. The time-of-flight measurement of Si(II) (634.71nm) under different laser irradiance conditions, from 0.236GW/cm2 to 1.667GW/cm2, are presented and discussed.
[1] Harilal S S, Bindhu C V, Issac R C, Nampoori V P N andVallabhan P G 1997 J. Appl. Phys. 82 2140 [2] Amoruso S, Sambri A, and Wang X 2006 J. Appl. Phys. 100 013302 [3] Geohegan D B 1990 Thin Solid Films 220 138 [4] Suliyanti M M et al 2005 J. Appl. Phys. 97053305 [5] Geohegan D B 1994 Pulsed Laser Deposition of ThinFilms ed Chrisey D B and Hubler G K (New York: Wiley) chap\,5 [6] Takenoshita K, Kay C S, Teerawattanasook S and RichardsonM 2005 Proc. SPIE 64 5751 [7] Mathew M V, Harilal S S and Tillack M S 2007 J. Phys.D: Appl. Phys. 40 447 [8] Harilal S S 2001 Appl. Surf. Sci. 172 103 [9] Bleiner D, Bogaerts A, Belloni F and Nassisi V 2007 J. Appl. Phys. 101 083301 [10] Harilal S S, Issac R C, Bindhu C V, Nampoori V P N andVallabhan C P G 1997 J. Appl. Phys. 81 3637 [11] Steckla A J and Devrajan J 1996 Appl. Phys. Lett. 69 3824 [12] Laube S J P and Voevodin A 1998 Surf. Coat.Technol. 105 125 [13] Amoruso S, Berardi V, Bruzzese R, Spinelli N and Wang X1998 Appl. Surf. Sci. 129 953 [14] Park S M and Moon J Y 1998 J. Chem. Phys. 1098124 [15] An C W, Lu Y F, Goh Y W and Tan E 2000 Appl. Surf.Sci. 54 269 [16] Harilal S S, Bindhu C V, Tillack M S, Najmabadi F andGaeris A C 2002 J. Phys. D: Appl. Phys. 35 2935 [17] Geohegan D B 1992 Appl. Phys. Lett. 60 2732 [18] Bindhu C V, Harilal S S, Tillack M S, Najmabadi F andGaeris A C 2003 J. Appl. Phys. 94 7402 [19] Chen Z Y and Bogaerts A 2005 J. Appl. Phys. 97 063305 [20] Bogaerts A, Chen Z Y, Gijbels R and Vertes A 2003 Spectrochim. Acta B 58 1867 [21] Lunney J G and Jordan R 1998 Appl. Surf. Sci. 941 127 [22] Chaos J A, Dreyfus R W, Perea A, Serna R, Gonzalo J andAfonso C N 2000 Appl. Phys. Lett. 76 649