Broadband Infrared Luminescence from Bismuth-Doped GeS2--Ga2S3 Chalcogenide Glasses
DONG Guo-Ping1,2, XIAO Xiu-Di1,2, REN Jin-Jun1,2, RUAN Jian1,2, LIU Xiao-Feng1,2, QIU Jian-Rong3, LIN Chang-Gui4, TAO Hai-Zheng4, ZHAO Xiu-Jian4
1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 2018002Graduate School of the Chinese Academy of Sciences, Beijing 1000493State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 3100274Key Laboratory of Silicate Materials Science and Engineering (Ministry of Education), Wuhan University of Technology, Wuhan 430070
Broadband Infrared Luminescence from Bismuth-Doped GeS2--Ga2S3 Chalcogenide Glasses
1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 2018002Graduate School of the Chinese Academy of Sciences, Beijing 1000493State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 3100274Key Laboratory of Silicate Materials Science and Engineering (Ministry of Education), Wuhan University of Technology, Wuhan 430070
摘要Near-infrared luminescence is observed from bismuth-doped GeS2--Ga2S3 chalcogenide glasses excited by an 808nm laser diode. The emission peak with a maximum at about 1260nm is observed in 80GeS2--20Ga2S3:0.5Bi glass and it shifts toward the long wavelength with the addition of Bi gradually. The full width of half maximum (FWHM) is about 200nm. The broadband infrared luminescence of Bi-doped GeS2--Ga2S3 chalcogenide glasses may be predominantly originated from the low valence state of Bi, such as Bi+. Raman scattering is also conducted to clarify the structure of glasses. These Bi-doped GeS2--Ga2S3 chalcogenide glasses can be applied potentially in novel broadband optical fibre amplifiers and broadly tunable laser in optical communication system.
Abstract:Near-infrared luminescence is observed from bismuth-doped GeS2--Ga2S3 chalcogenide glasses excited by an 808nm laser diode. The emission peak with a maximum at about 1260nm is observed in 80GeS2--20Ga2S3:0.5Bi glass and it shifts toward the long wavelength with the addition of Bi gradually. The full width of half maximum (FWHM) is about 200nm. The broadband infrared luminescence of Bi-doped GeS2--Ga2S3 chalcogenide glasses may be predominantly originated from the low valence state of Bi, such as Bi+. Raman scattering is also conducted to clarify the structure of glasses. These Bi-doped GeS2--Ga2S3 chalcogenide glasses can be applied potentially in novel broadband optical fibre amplifiers and broadly tunable laser in optical communication system.
[1] Yamada M, Ono H and Ohishi Y 1998 Electron. Lett. 341490 [2] Fujimoto Y and Nakatsuka M 2001 Jpn. J. Appl. Phys. 40L279 [3] Fujimoto Y and Nakatsuka M 2003 Appl. Phys. Lett. 823325 [4] Peng M Y, Qiu J R, Chen D P, Meng X G and Zhu C S 2005 Opt.Lett. 30 2433 [5] Peng M Y, Qiu J R, Chen D P, Meng X G and Zhu C S 2005 Opt.Express 13 6892 [6] Meng X G, Qiu J R, Peng M Y, Chen D P, Zhao Q Z, Jiang X W and ZhuC S 2005 Opt. Express 13 1628 [7] Meng X G, Qiu J R, Peng M Y, Chen D P, Zhao Q Z, Jiang X W and ZhuC S 2005 Opt. Express 13 1635 [8] Ren J J, Qiu J R, Chen D P, Zhao Q Z, Jiang X W and Zhu C S 2007 Solid. State. Commun. 141 559 [9] Dvoyrin V V, Mashinsky V M, Bulatov L I, Bufetov I A, Shubin A V,Melkumov M A, Kustov E F, Dianov E M, Umnikov A A, Khopin V F,Yashkov M V and Guryanov A N 2006 Opt. Lett. 31 2966 [10] Dvoyrin V V, Mashinsky V M and Dianov E M 2007 Opt. Lett. 32 451 [11] Razdobreev I, Bigot L, Pureur V, Favre A, Bouwmans G and Douay M2007 Appl. Phys. Lett. 90 031103 [12] Ren J, Chen D P, Yang G, Xu Y S, Zeng H D and Chen G R 2007 Chin. Phys. Lett. 24 1958 [13] Dong G P, Tao H Z, Xiao X D, Lin C G, Gong Y Q, Zhao X J, Chu S S,Wang S F and Gong Q H 2007 Opt. Express 15 2399 [14] Dong G P, Tao H Z, Xiao X D, Lin C G, Zhao X J and Mao S 2007 J. Phys. Chem. Solids 68 158 [15] Tao H Z, Zhao X J, Jing C B, Yang H and Mao S 2005 Solid.State. Commun. 133 327 [16] Peng M Y, Meng X G, Qiu J R, Zhao Q Z and Zhu C S 2005 Chem.Phys. Lett. 403 410 [17] Voynarovych I, Pinzenik V, Makauz I, Shiplyak M, Kokenyesi S andDaroczi L 2007 J. Non-Cryst. Solids 353 1478 [18] Heo J, Joong M Y and Ryou S Y 1998 J. Non-Cryst. Solids 238 115 [19] Griffiths J E, Philips J C, Espinosa G P and Remeika J P 1982 Phys. Rev. B 26 3499 [20] Blasse G, Meijerink A, Nomes M and Zuidema J 1994 J. Phys.Chem. Solids 55 171 [21] Elliott S R and Steel A T 1986 Phys. Rev. Lett. 571316 [22] Mytilineou E, Chao B S and Papadimitriou D 1996 J. Non-Cryst.Solids 195 279