Cellular Cell Bifurcation of Cylindrical Detonations
HAN Gui-Lai1, JIANG Zong-Lin1, WANG Chun1, ZHANG Fan2
1Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 1000802Defence Research and Development Canada-Suffield, PO Box 4000, Stn. Main, Medicine Hat, AB T1A 8K6, Canada
Cellular Cell Bifurcation of Cylindrical Detonations
HAN Gui-Lai1;JIANG Zong-Lin1;WANG Chun1;ZHANG Fan2
1Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 1000802Defence Research and Development Canada-Suffield, PO Box 4000, Stn. Main, Medicine Hat, AB T1A 8K6, Canada
摘要Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.
Abstract:Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.
[1] Solouklin R 1959 Izv. Akad. Nauk SSSR, OTN Mekhan. 6 145 [2] Lee J and Lee B 1965 Phys. Fluids 8 2148 [3] Watt S and Sharpe G 2005 J. Fluid Mech. 533329 [4] Wang C and Jiang Z 2007 Proc. 26th ISSW (Goettingen15--20 July 2007) [5] Sichel M et al 2001 Proc. R. Soc. London A 458 49