摘要We discuss the motions of curves by introducing an extra spatial variable or equivalently, moving surfaces in affine geometries. It is shown that the 2+1-dimensional breaking soliton equation and a 2+1-dimensional nonlinear evolution equation regarded as a generalization to the 1+1-dimensional KdV equation arise from such motions.
Abstract:We discuss the motions of curves by introducing an extra spatial variable or equivalently, moving surfaces in affine geometries. It is shown that the 2+1-dimensional breaking soliton equation and a 2+1-dimensional nonlinear evolution equation regarded as a generalization to the 1+1-dimensional KdV equation arise from such motions.
LI Yan-Yan;QU Chang-Zheng;. Higher-Dimensional Integrable Systems Induced by Motions of Curves in Affine Geometries[J]. 中国物理快报, 2008, 25(6): 1931-1934.
LI Yan-Yan, QU Chang-Zheng,. Higher-Dimensional Integrable Systems Induced by Motions of Curves in Affine Geometries. Chin. Phys. Lett., 2008, 25(6): 1931-1934.
[1]Hasimoto H 1972 J. Fluid Mech. 51 477 [2]Lamb G L 1977 J. Math. Phys. 18 1654 [3]Langer J and Perline R 1991 J. Nonlinear Sci. 171 [4]Lakshmanan M 1979 J. Math. Phys. 20 1667 [5]Goldstein R E and Petrich D M 1991 Phys. Rev. Lett. 67 3203 [6]Nakayama K, Segur H and Wadati M 1992 Phys. Rev.Lett. 69 2603 [7]Chou K S and Qu C Z 2001 J. Phys. Soc. Jpn. 701912 [8]Chou K S and Qu C Z 2002 Physica D 162 9 [9]Chou K S and Qu C Z 2003 J. Nonlinear Sci. 13487 [10]Chou K S and Qu C Z 2002 Chaos, Solitons andFractals 14 29 [11]Wo W F and Qu C Z 2007 J. Geom. Phys. 57 1733 [12]Beffa G M, Sanders J A and Wang J P 2002 J. Nonlin.Sci. 12 143 [13]Beffa G M 2005 Proc. Am. Math. Soc. 134 779 [14]Ivey T A 2001 Contemp. Math. 285 71 [15]Anco S C 2006 J. Phys. A: Math. Gen. 392043 [16]Anco S C 2006 SIGMA 2(044) 1 [17]Myrzakulov R, Vijayalakshmi S, Nugmanova G N andLakshmanan M 1997 Phys. Lett. A 233 391 [18]Myrzakulov R, Vijayalakshmi S, Syzdykova R N andLakshmanan M 1998 J. Math. Phys. 39 2122 [19]Lakshmanan M, Myrzakulov R, Vijayalakshmi S and DanlybaevaA K 1998 J. Math. Phys. 39 3765 [20]Qu C Z and Zhang S L 2004 Chaos, Solitons andFractals 20 1013 [21]Nomizu K and Sasaki T 1994 Affine DifferentialGeometry (Cambridge: Cambridge University Press) [22]Calabi E, Olver P J and Tannenbaum A 1996 Adv.Math. 124 154