摘要The Hamiltonian formulation of Lagrangian on time scale isinvestigated and the equivalence of Hamilton and Euler--Lagrange equations is obtained. The role of Lagrange multipliers is discussed.
Abstract:The Hamiltonian formulation of Lagrangian on time scale isinvestigated and the equivalence of Hamilton and Euler--Lagrange equations is obtained. The role of Lagrange multipliers is discussed.
[1] Hilger S 1990 Results Math. 18 18 [2] Hilger S 1997 Nonlin. Anal.: Theor. 30 2683 [3] Agarwal R, Bohner M, O'Regan D and PetersonA 2002 J. Comput. Appl. Math. 141 1 [4] Bohner M 2004 Dynam. Systems Appl. 13 339 [5] Bohner M and Peterson A 2001 Dynamic Equations onTime Scales (Boston: Birkh\v auser) [6] Hilscher R and Zeidan V 2004 J. Math. Anal. Appl. 289 143 [7] Atici F M, Biles D C and Lebedinsky A 2006 Math.Comp. Model. 43 718 [8] Ahlbrandt C D, Bohner M and Ridenhour J 2000 J.Math. Anal. Appl. 250 561 [9] Dirac P A M 1950 Can. J. Math. 2 129 Dirac P A M 1964 Lectures on Quantum Mechanics (New York:Yeshiva University) [10] Bergmann P G and Goldberg I 1955 Phys. Rev. 98 531 [11] Henneaux M and Teitelboim C 1992 Quantization ofGauge Systems (Princeton, NJ: Princeton University Press) [12] Cari\~{nena J F, Fern\'{andez-N\'{u\~{nez J and Ra\~{nada F M 2003 J. Phys. A: Math. Gen. 36 3789 [13] Baleanu D and Avkar T 2003 Nuovo Cimento B 119 1 73 [14] Baleanu D and Guler Y 2000 Nuovo Cimento B 115 3 319 [15] Sugano R and Kimura T 1990 Phys. Rev. D 41 1247 [16] Ferreira R A C and Torres D F M arXiv:0706.3141v2 [math.OC]