摘要TiN as gate electrode in Si/HfO2/TiN/poly-Si stack is evaluated after the postmetal annealing treatments. Interface reactions are investigated using electron-energy-loss spectroscopy and x-ray photoelectron spectroscopy. The work function of the TiN/poly-Si stack shows strong dependence on the postmetal deposition annealing conditions. The interfacial product in TiN/poly-Si interface is inferred as TiSiN, which is beneficial for the whole high-k stack since TiSiN possesses higher work function compared to TiN and poly-Si.
Abstract:TiN as gate electrode in Si/HfO2/TiN/poly-Si stack is evaluated after the postmetal annealing treatments. Interface reactions are investigated using electron-energy-loss spectroscopy and x-ray photoelectron spectroscopy. The work function of the TiN/poly-Si stack shows strong dependence on the postmetal deposition annealing conditions. The interfacial product in TiN/poly-Si interface is inferred as TiSiN, which is beneficial for the whole high-k stack since TiSiN possesses higher work function compared to TiN and poly-Si.
JIANG Ran;YAO Li-Ting. Interface Evolution of TiN/Poly Si as Gate Material on Si/HfO2 Stack[J]. 中国物理快报, 2008, 25(6): 2190-2193.
JIANG Ran, YAO Li-Ting. Interface Evolution of TiN/Poly Si as Gate Material on Si/HfO2 Stack. Chin. Phys. Lett., 2008, 25(6): 2190-2193.
[1] Muller D A, Sorsch T, Moccio S, Baumann H F, Evans-Lutterodt K andTimp G 1999 Nature 399 758 [2] Lysaght P S, Peterson J J, Foran B, Young C, Bersuker G and Huff HR 2004 Mater. Sci. Semicond. Process. 7 259 [3] Ragnarsson L -A, Pantisano L, Kaushik V, Saito S -I, Shimamoto Y,Gendt S D and Heyns M 2003 Tech. Dig. Int. Electron Devices Meet.p 87 [4] Lu Y K, Zhu W, Chen X F and Gopalkrishnan R 2006 Microelectron. Engin. 83 371 [5] Lemme M C, Efavi J K, Gottlob H D B, Mollenhauer T, Wahlbrink T andKurz H 2005 Microelectron. Reliability 45 953 [6] Park D G, Lim K Y, Cho H J, Cha T H, Yeo I S, Roh J S and Park J W2002 Appl. Phys. Lett. 80 2514 [7] Gu D F, Sandwip K D and Majhi P 2006 Appl. Phys. Lett. 89 082907 [8] Lin Y X, \"Ozt\"urk M C, Se B C, Rhee J, Lee J C and Misra V2005 Appl. Phys. Lett. 87 071903 [9] Cho H J, Lee H L, Park S G, Park H B, Jeon T S, Jin B J et al2004 Tech. Dig. Int. Electron Devices Meet. p 503 [10] Jiang R Xie E Q and Wang Z F 2006 Appl. Phys. Lett. 89142907 [11] Suh Y S, Heuss G, Lee J H and Misra V 2003 IEEEElectron. Devices Lett. 24 439 [12] Luan H, Alshareef H N, Harris H R, Wen H C, Choi K, Senzaki Y,Majhi P and Lee B H 2006 Appl. Phys. Lett. 88 142113
[1]
. [J]. 中国物理快报, 2020, 37(10): 107501-.
[2]
. [J]. 中国物理快报, 2019, 36(10): 106101-.
[3]
. [J]. 中国物理快报, 2019, 36(6): 67201-.
[4]
. [J]. 中国物理快报, 2019, 36(5): 57102-.
[5]
. [J]. 中国物理快报, 2018, 35(11): 116301-.
[6]
. [J]. 中国物理快报, 2018, 35(11): 117101-.
[7]
. [J]. 中国物理快报, 2018, 35(9): 97101-.
[8]
. [J]. 中国物理快报, 2017, 34(12): 127101-.
[9]
. [J]. 中国物理快报, 2017, 34(7): 77101-.
[10]
. [J]. 中国物理快报, 2017, 34(5): 57302-057302.
[11]
. [J]. 中国物理快报, 2015, 32(10): 107101-107101.
[12]
. [J]. 中国物理快报, 2015, 32(09): 97102-097102.
[13]
RAO Jian-Ping;OUYANG Chu-Ying**;LEI Min-Sheng;JIANG Feng-Yi
. Vacancy and H Interactions in Nb[J]. 中国物理快报, 2011, 28(12): 127101-127101.