Spin Splitting in In0.53Ga0.47As/InP Heterostructures
SHANG Li-Yan1, YU Guo-Lin1, LIN Tie1, ZHOU Wen-Zheng1,2, GUO Shao-Ling1, DAI Ning1, CHU Jun-Hao1
1National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 2000832Physicals Science and Technology College, Guangxi University, Nanning 530004
Spin Splitting in In0.53Ga0.47As/InP Heterostructures
1National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 2000832Physicals Science and Technology College, Guangxi University, Nanning 530004
摘要Spin-orbit coupling in a gate-controlled In0.53Ga0.47As/InP quantum well is investigated in the presence of a large Zeeman effect. We develop a Fourier-transform fitting procedure to extract the zero-field spin-splitting Rashba parameter α. The bare g factor value is found to be of the order of 3 from magnetotransport measurements in tilted magnetic fields. It is found that both Zeeman splitting and Rashba splitting play important roles in determining the total spin splitting in In0.53Ga0.47As.
Abstract:Spin-orbit coupling in a gate-controlled In0.53Ga0.47As/InP quantum well is investigated in the presence of a large Zeeman effect. We develop a Fourier-transform fitting procedure to extract the zero-field spin-splitting Rashba parameter α. The bare g factor value is found to be of the order of 3 from magnetotransport measurements in tilted magnetic fields. It is found that both Zeeman splitting and Rashba splitting play important roles in determining the total spin splitting in In0.53Ga0.47As.
[1] Datta S and Das B 1989 Appl. Phys. Lett. 56665 [2] Nitta J, Akazaki T and Takayanagi H 1997 Phys. Rev.Lett. 78 1335 [3] Lu J P, Yau J B, Shukla S P, Shayegan M, Wissinger L,R?ssler U and Winkler R 1998 Phys. Rev. Lett. 81 1282 [4] Hu C M, Nitta J, Akazaki T, Takayanagi H, Osaka J, PfefferP and Zawadzki W 1999 Phys. Rev. B 60 7736 [5] Bychkov Y A and Rashba E I 1984 J. Phys. C 176039 [6] Das B, Miller D C, Datta S, Reifenberger R, Hong W P,Bhattacharya P K, Singh J and Jaffe M 1989 Phys. Rev. B 39 1411 [7] Kwon J H, Koo H C, Chang J, Han S and Eom J 2007 Appl. Phys. Lett. 90 112505 [8] Koga T, Nitta J, Akazaki T and Takayanagi H 2002 Phys. Rev. Lett. 89 046801 [9] Meijer F E, Morpurgo A F, Klapwijk T M and Nitta J 2005 Phys. Rev. Lett. 94 186805 [10] Sch?pers T, Engels G, Lange J, Klocke T, Hollfelder M andL\"uth H J. Appl. Phys. 83 4324 [11] Dobers M, Vieren J P, Guldner Y, Bove P, Ommes F andRazeghi M 1989 Phys. Rev. B 40 8075 [12] Kita T, Sato T, Gozu S and Yamada S 2001 Physica B 298 65 [13] Gui Y S, Hu C M, Chen Z H, Zheng G Z, Guo S L, Chu J H,Chen J X and Li A Z 2000 Phys. Rev. B 61 7237 [14] Isihara A and Smrcka L 1986 J. Phys. C 196777 [15] Coleridge P T, Stoner R and Fletcher R 1989 Phys.Rev. B 39 1120 [16] Das B, Datta S and Reifenberger R 1990 Phys. Rev. B 41 8278 [17] Leadley D R, Nicholas R J, Harris J J and Foxon C T 1998 Phys. Rev. B 58 13036 [18] Savel'ev J G, Kreshchuk A M, Novikov S V, Shik A Y,Remeny G, Kovacs G, Podor B and Gombos G 1996 J. Phys.:Condens. Matter 8 9025 [19] Palik E D, Picus G S, Teitler S and Wails R F 1961 Phys. Rev. 122 475 [20] Nicholas R J, Brummell M A, Portal J C, Cheng K Y, Cho AY and Pearsall T P 1983 Solid State Commun. 45 911 [21] Lamari S 2001 Phys. Rev. B 64 245340