摘要Ag-doped and pure ZrO2 thin films are prepared on Pt/Ti/SiO2/Si substrates by sol-gel process for resistive random access memory application. The highly reproducible resistive switching is achieved in the 10% Ag-doped ZrO2 devices. The improved resistive switching behaviour in the Ag doped ZrO2 devices could be attributed to Ag doping effect on the formation of the stable filamentary conducting paths. In addition, dual-step reset processes corresponding to three stable resistance states are observed in the 10% Ag doped ZrO2 devices, which may be implemented for the application of multi-bit storage.
Abstract:Ag-doped and pure ZrO2 thin films are prepared on Pt/Ti/SiO2/Si substrates by sol-gel process for resistive random access memory application. The highly reproducible resistive switching is achieved in the 10% Ag-doped ZrO2 devices. The improved resistive switching behaviour in the Ag doped ZrO2 devices could be attributed to Ag doping effect on the formation of the stable filamentary conducting paths. In addition, dual-step reset processes corresponding to three stable resistance states are observed in the 10% Ag doped ZrO2 devices, which may be implemented for the application of multi-bit storage.
SUN Bing;LIU Li-Feng;HAN De-Dong;WANG Yi;LIU Xiao-Yan;HAN Ru-Qi;KANG Jin-Feng. Improved Resistive Switching Characteristics of Ag-Doped ZrO2 Films Fabricated by Sol-Gel Process[J]. 中国物理快报, 2008, 25(6): 2187-2189.
SUN Bing, LIU Li-Feng, HAN De-Dong, WANG Yi, LIU Xiao-Yan, HAN Ru-Qi, KANG Jin-Feng. Improved Resistive Switching Characteristics of Ag-Doped ZrO2 Films Fabricated by Sol-Gel Process. Chin. Phys. Lett., 2008, 25(6): 2187-2189.
[1] Rohde C, Choi B J, Jeong D S, Choi S, Zhao J S, and Hwang C S 2005 Appl. Phys. Lett. 86 262907 [2] Choi B J, Choi S, Kim K M et al 2006 Appl. Phys. Lett. 89 012906 [3] Rossel C, Meijer G I, Br\'emaud D and Widmer D 2001 J. Appl.Phys. 90 2892 [4] Baek I G, Lee M S, Seo S, Lee M J, Seo D H, Suh D S, Park J C, ParkS O, Kim H S, Yoo I K, Chung U I and Moon J T 2004 Tech. Dig. Int.Electron Device Meet. 2004 587 [5] Hiatt W R and Hickmott T W 1965 Appl. Phys. Lett. 6 106 [6] Lee D, Choi H, Sim H, Choi D, Hwang H, Lee M J, Seo S A and Yoo I K2005 IEEE Electron. Device Lett. 26 719 [7] Wu X, Zhou P, Li J, Chen L Y, Lv H B, Lin Y Y and Tang T A 2007 Appl. Phys. Lett. 90 183507 [8] Guan W H, Long S B, Jia R and Liu M 2007 Appl. Phys. Lett. 91 062111 [9] Fujimoto M, Koyama H, Konagai M, Hosoi Y, Ishihara K, Ohnishi S andAwaya N 2006 Appl. Phys. Lett. 89 223509 [10] Seo S, Lee M J, Seo D H, Jeoung E J, Suh D-S, Joung Y S, Yoo I K,Hwang I R, Kim S H, Byun I S, Kim J-S, Choi J S and Park B H 2004 Appl. Phys. Lett. 85 5655 [11] Artemenko S N 2004 JETP Lett. 79 277 [12] Lee D, Seong D J, Choi H J, Jo I, Dong R, Xiang W, Oh S, Pyun M,Seo S O, Heo S, Jo M, Hwang D K, Park H K, Chang M, Hasan M and Hwang H2006 Tech. Dig. Int. Electron. Device Meet. 2006 797