Field Dependence of π-Band Superconducting Gap in MgB2 Thin Films from Point-Contact Spectroscopy
HUANG Yan1, WANG Yong-Lei1, SHAN Lei1, JIA Ying1, YANG Huan1, WEN Hai-Hu1, ZHUANG Cheng-Gang2,3, LI Qi2, CUI Yi2, XI Xiao-Xing 2,4
1National Laboratory for Superconductivity, Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, PO Box 603, Beijing 1001902Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA3Department of Physics, Peking University, Beijing 1008714Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Field Dependence of π-Band Superconducting Gap in MgB2 Thin Films from Point-Contact Spectroscopy
1National Laboratory for Superconductivity, Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, PO Box 603, Beijing 1001902Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA3Department of Physics, Peking University, Beijing 1008714Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
摘要We present the results of point-contact spectroscopy measurements on High-quality epitaxial MgB2 thin films with injected current along the c-axis. The temperature and field dependences of π-band properties with the field parallel to (H⊥) or perpendicular to (H|| the c-axis are investigated in detail. When a magnetic field is applied, either parallel or perpendicular to the c-axis, the density of the quasiparticle state (DOS) of the π-band proliferates quickly with increasing field, while the gap amplitude of the π-band decreases slowly, which is different from the recent theoretical calculations, showing a field dependent competition between the interband scattering and the pair-breaking effects.
Abstract:We present the results of point-contact spectroscopy measurements on High-quality epitaxial MgB2 thin films with injected current along the c-axis. The temperature and field dependences of π-band properties with the field parallel to (H⊥) or perpendicular to (H|| the c-axis are investigated in detail. When a magnetic field is applied, either parallel or perpendicular to the c-axis, the density of the quasiparticle state (DOS) of the π-band proliferates quickly with increasing field, while the gap amplitude of the π-band decreases slowly, which is different from the recent theoretical calculations, showing a field dependent competition between the interband scattering and the pair-breaking effects.
HUANG Yan;WANG Yong-Lei;SHAN Lei;JIA Ying;YANG Huan;WEN Hai-Hu;ZHUANG Cheng-Gang;LI Qi;CUI Yi; XI Xiao-Xing;. Field Dependence of π-Band Superconducting Gap in MgB2 Thin Films from Point-Contact Spectroscopy[J]. 中国物理快报, 2008, 25(6): 2228-2231.
HUANG Yan, WANG Yong-Lei, SHAN Lei, JIA Ying, YANG Huan, WEN Hai-Hu, ZHUANG Cheng-Gang, LI Qi, CUI Yi, XI Xiao-Xing,. Field Dependence of π-Band Superconducting Gap in MgB2 Thin Films from Point-Contact Spectroscopy. Chin. Phys. Lett., 2008, 25(6): 2228-2231.
[1]Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J2001 Nature 410 63 [2] Yanson I K, and Naidyuk Y G 2004 Low Temp. Phys. 30 261 and references therein [3] Choi H J, Cohen M L and Louie S G 2006 Phys. Rev. B 73 104520 and references therein [4]Wen H H, Li S L, Zhao Z W, Jin H, Ni Y M, Kang W N, Kim H J,Choi E M and Lee S 2001 Phys. Rev. B 64 134505 [5]Jia Y, Huang Y, Yang H, Shan L, Ren C, Zhuang C G, Cui Y, Li Q,Liu Z K, Xi X X and Wen H H Cond-mat/0\,703\,637 [6] Bouquet F, Wang Y, Sheikin I, Plackowski T, Junod A, Lee S andTajima S 2002 Phys. Rev. Lett. 89 257001 [7] Erwin S C and Mazin I I 2003 Phys. Rev. B 68 132505 [8] Gonnelli R S, Daghero D, Calzolari A, Ummarino G A, DellaroccaV, Stepanov V A, Jun J, Kazakov S M and Karpinski J 2004 Phys.Rev. B 69 100504(R) [9] Bugoslavsky Y, Miyoshi Y, Perkins G K, Caplin A D, Cohen L F,Pogrebnyakov A V and Xi X X 2004 Phys. Rev. B 69 132508 [10] Hol'anov\'a Z, Szab\'o P, Samuely P, Wilke R H T, Bud'ko S Land Canfield P C 2004 Phys. Rev. B 70 064520 [11] Angst M, Bud'ko S L, Wilke R H T and Canfield P C 2005 Phys.Rev. B 71 144512 [12] Bugoslavsky Y, Miyoshi Y, Perkins G K, Caplin A D, Cohen L F,Pogrebnyakov A V and Xi X X 2005 Phys. Rev. B 72 224506 [13] Szab\'o P, Samuely P, Hol'anov\'a Z, Bud'ko S, Canfield P Cand Marcus J 2006 cond-mat/0604342 [14] Capua R D, Aebersold H U, Ferdeghini C, Ferrando V, OrgianiP, Putti M, Salluzzo M, Vaglio R and Xi X X 2007 Phys. Rev. B 75 014515 [15] Putti M, Brotto P, Monni M, Galleani d'Aglianol E, Sanna Aand Massidda S 2007 Europhys. Lett. 77 57005 [16] Giubileo F, Bobba F, Scarfato A, Cucolo A M, Kohen A,Roditchev D, Zhigadlo N D and Karpinski J 2007 Phys. Rev. B 76 024507 [17] Koshelev A E and Golubov A A 2003 Phys. Rev. Lett. 90 177002 [18] Eskildsen M R, Kugler M, Tanaka S, Jun J, Kazakov S M,Karpinski J and Fischer O 2002 Phys. Rev. Lett. 89 187003 [19] Zeng X H, Pogrebnyakov A V, Kotcharov A, Jones J E, Xi X X,Lysczek E M, Redwing J M, Xu S Y, Li Q, Lettieri James, Schlom D G, TianW, Pan X Q and Liu Z K 2002 Nature Mater. 1 35 [20] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev.B 25 4515 [21] Gonnelli R S, Daghero D, Ummarino G A, Stepanov V A, Jun J,Kazakov S M and Karpinski J 2002 Phys. Rev. Lett. 89 247004 [22] Szab\'{o P, Samuely P, Kacmarc\'{\ik J, Klein T, Marcus J,Fruchart D, Miraglia S, Marcenat C and Jansen A G M 2001 Rev.Lett. 87 137005 [23] Iavarone M, Karapetrov G, Koshelev A E, Kwok W K, Crabtree GW, Hinks D G, Kang W N, Choi E M, Kim H J, Kim H J and Lee S I 2002 Phys. Rev. Lett. 89 187002 [24] Brinkman A, Golubov A A, Rogalla H, Dolgov O V, Kortus J,Kong Y, Jepsen O and Andersen O K 2002 Phys. Rev. B 65 180517(R) [25] Shan L, Huang Y, Ren C and Wen H H 2006 Phys. Rev. B 73 134508