摘要We investigate the nonlinear thermal transport properties of a single interacting quantum dot with two energy levels tunnel-coupled to two electrodes using nonequilibrium Green function method and Hartree--Fock decoupling approximation. In the case of asymmetric tunnel-couplings to two electrodes, for example, when the upper level of the quantum dot is open for transport, whereas the lower level is blocked, our calculations predict a strong asymmetry for the heat (energy) current, which shows that the quantum dot system may act as a thermal rectifier in this specific situation.
Abstract:We investigate the nonlinear thermal transport properties of a single interacting quantum dot with two energy levels tunnel-coupled to two electrodes using nonequilibrium Green function method and Hartree--Fock decoupling approximation. In the case of asymmetric tunnel-couplings to two electrodes, for example, when the upper level of the quantum dot is open for transport, whereas the lower level is blocked, our calculations predict a strong asymmetry for the heat (energy) current, which shows that the quantum dot system may act as a thermal rectifier in this specific situation.