摘要A templating method for fabricating two-dimensional (2D) arrays of micron-sized gold rings is reported. The microstructures are formed by electroless plating in a through-porous polymer membrane on a silicon substrate obtained from a closed-packed silica colloidal crystal. Our results show that the sizes of gold rings can be altered by varying electroless plating conditions for the porous polystyrene membranes. Moreover, we explain the growth mechanism of gold rings using the classical crystal growth theory that is preferential nucleation at reentrant sites.
Abstract:A templating method for fabricating two-dimensional (2D) arrays of micron-sized gold rings is reported. The microstructures are formed by electroless plating in a through-porous polymer membrane on a silicon substrate obtained from a closed-packed silica colloidal crystal. Our results show that the sizes of gold rings can be altered by varying electroless plating conditions for the porous polystyrene membranes. Moreover, we explain the growth mechanism of gold rings using the classical crystal growth theory that is preferential nucleation at reentrant sites
DONG Wen;GUO Xiang;WANG Si-Zhen;WANG Zhen-Lin;MINGNai-Ben. Fabrication of Two-Dimensional Arrays of Micron-Sized Gold Rings Based on Preferential Nucleation at Reentrant Sites[J]. 中国物理快报, 2008, 25(8): 2957-2960.
DONG Wen, GUO Xiang, WANG Si-Zhen, WANG Zhen-Lin, MINGNai-Ben. Fabrication of Two-Dimensional Arrays of Micron-Sized Gold Rings Based on Preferential Nucleation at Reentrant Sites. Chin. Phys. Lett., 2008, 25(8): 2957-2960.
[1] L\'evy L P et al 1990 Phys. Rev. Lett. 64 2074 [2] Chandrasekhar V et al 1991 Phys. Rev. Lett. 673578 [3] Matveev K A, Larkin A I and Glazman L I 2002 Phys.Rev. Lett. 89 096802 [4] Li S P et al 2001 Phys. Rev. Lett. 86 1102 [5] Aizpurua J et al 2003 Phys. Rev. Lett. 90057401 [6] Yang T, Hara M and Hirohata A 2007 Appl. Phys. Lett. 90 022504 [7] Larsson E M, Alegret J, K\"all M and Sutherland D S 2007 Nanoletters 7 1256 [8] Suarez M A, Grosjean T, Charraut D and Courjon D 2007 Opt. Commun. 270 447 [9] Hill M T et al 2004 Nature 432 206 [10] Kreibig U and Volmer M 1995 Springer Series inMaterial Science: Optical Properties of Metal Clusters (Berlin:Springer) vol 25 [11] Wang Z L, Chan C T, Zhang W Y, Ming N B and Shen P 2001 Phys. Rev. B 64 113108 [12] Haes A J and Van Duyne R P 2002 J. Am. Chem. Soc. 124 10596 [13] Brolo A G, Arctander E, Gordon R, Leathem B and KavanaghK L 2004 Nanoletters 4 2015 [14] Laurent G, F\'elidj N, Grand J, Aubard J and L\'evi G2006 Phys. Rev. B 73 245417 [15] Kim S, Jung J M, Choi D G, Jung H T and Yang S M 2006 Langmuir 22 7109 [16] Cui B and Veres T 2007 Microelectron. Engin. 84 1544 [17] Mclellan J M, Geissler M and Xia Y N 2004 J. Am.Chem. Soc. 126 10830 [18] Marczewski D and Goedel W A 2005 Nanoletters 5 295 [19] Larsson E M, Alegret J, K\"all M and Sutherland D S 2007 Nanoletters 7 1256 [20] Pearson D H, Tonucci R J, Bussmann K M and Bolden E A1999 Adv. Mater. 11 769 [21] Hobbs K L, Larson P R, Lian G D, Keay J C and Johnson M B2004 Nanoletters 4 167 [22] Yan F and Goedel W A 2004 Nanoletters 4 1193 [23] Duan G T, Cai W P, Luo Y Y, Li Z G and Lei Y 2006 J.Phys. Chem. B 110 15729 [24] Dong W, Dong H, Wang Z L, Zhan P, Yu Z Q, Zhao X N, Zhu YY and Ming N B 2006 Adv. Mater. 18 755 [25] Ji T, Lirtsman V G, Avny Y and Davidov D 2001 Adv.Mater. 13 1253 [26] Oldenburg S J, Averitt R D, Westcott S L and Halas N J1998 Chem. Phys. Let. 288 243 [27] Liang Z J, Susha A and Caruso F 2003 Chem. Mater. 15 3176 [28] Chakravarty B K and Pound G M 1963 Proceedings ofthe Doyton International Conference on Condensation and Evaporation(New York: Gordon and Breach)