Relativistic Magnetosonic Soliton in a Negative-Ion-Rich Magnetized Plasma
WANG Yun-Liang1, ZHOU Zhong-Xiang2, LU Yan-Zhen1, NI Xiao-Dong1, SHEN Jiang1, ZHANG Yu1
1Department of Physics, School of Applied Science, University of Science and Technology Beijing, Beijing 1000832Department of Physics, Harbin Institute of Technology, Harbin 150001
Relativistic Magnetosonic Soliton in a Negative-Ion-Rich Magnetized Plasma
WANG Yun-Liang1, ZHOU Zhong-Xiang2, LU Yan-Zhen1, NI Xiao-Dong1, SHEN Jiang1, ZHANG Yu1
1Department of Physics, School of Applied Science, University of Science and Technology Beijing, Beijing 1000832Department of Physics, Harbin Institute of Technology, Harbin 150001
摘要Two-dimensional (2D) relativistic magnetosonic solitons in the negative-ion-rich plasma consisting of positive ions Ar+, negative ions SF6- and electrons are investigated in the presence of an applied magnetic field B0 and can be described by a Kadomtsev--Petviashvili (KP) equation in the weakly relativistic limit. The ratio of positive ion density to negative ion density has a marked influence on the amplitude Φm and width W of the steady-state KP soliton. The interaction law of the nontrivial solitons with rich web structure is studied by the Wronskian determinant method.
Abstract:Two-dimensional (2D) relativistic magnetosonic solitons in the negative-ion-rich plasma consisting of positive ions Ar+, negative ions SF6- and electrons are investigated in the presence of an applied magnetic field B0 and can be described by a Kadomtsev--Petviashvili (KP) equation in the weakly relativistic limit. The ratio of positive ion density to negative ion density has a marked influence on the amplitude Φm and width W of the steady-state KP soliton. The interaction law of the nontrivial solitons with rich web structure is studied by the Wronskian determinant method.
[1] Hwang G S and Giapis K P 1997 Phys. Rev. Lett. 79 845 [2] Hopkins M B and Mellon K N 1991 Phys. Rev. Lett. 67 449 [3] Kaganovich I D, Economm D J, Ramamurthi B N et al 2000 Phys. Rev. Lett. 84 1918 [4] Kim S and Merlino R L 2006 Phys Plasmas 13052118 [5] Wong A Y, Mamas D L and Arnush D 1975 Phys. Fluids 18 1489 [6] Shibayama T, Shindo H and Horiike Y 1996 PlasmaSources Sci. Technol. 5 254 [7] Inoue T, Taniguchi M, Morishita T et al 2005 Nucl.Fusion 45 790 [8] Das G C and Tagare S G 1975 Plasma Phys. 171025 [9] Watanabe S 1984 J. Phys. Soc. Jpn. 53 950 [10] Nakamura Y and Tsukabaysashi I 1984 Phys. Rev.Lett. 52 2356 [11] Wang Z X, Wang X, Ren L W et al 2005 Phys. Lett. A 339 96 [12] Mishra M K, Arora A K and Chhabra R S 2002 Phys.Rev. E 66 046402 [13] Ichiki R, Shindo M, Yoshimura S, et al 2001 Phys.Plasmas 8 4275 [14] Kuehl H H 1983 Phys. Fluids 26 1577 [15] Bhattacharya S K, Paul S N, Mondal K K 2002 Phys.Plasmas 9 4439 [16] Chiueh T 1989 Phys. Rev. Lett. 63 113 [17]Sato N, Sugai H and Hatakeyama R 1975 Phys. Rev.Lett. 34 931 [18] Wang Y, Zhou Z, Jiang X et al 2006 Phys. Plasmas 13 052307 [19] Wang Y, Zhou Z and Jiang X 2005 IEEE. Trans. PlasmaSci. 33 2005 [20] Toida M and Ohsawa Y 1994 J. Phys. Soc. Jpn. 63 573 [21] Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 1 [22] Biondini G and Chakravarty S 2006 J. Math. Phys. 47 033514