摘要We numerically demonstrate that `mode-entangled states' based on the transverse modes of classical optical fields in multimode waveguides violate Bell's inequality. Numerically simulating the correlation measurement scheme of Bell's inequality, we obtain the normalized correlation functions of the intensity fluctuations for the two entangled classical fields. By using the correlation functions, the maximum violations of Bell's inequality are obtained. This implies that the two classical fields in the mode-entangled states, although spatially separated, present a nonlocal correlation.
Abstract:We numerically demonstrate that `mode-entangled states' based on the transverse modes of classical optical fields in multimode waveguides violate Bell's inequality. Numerically simulating the correlation measurement scheme of Bell's inequality, we obtain the normalized correlation functions of the intensity fluctuations for the two entangled classical fields. By using the correlation functions, the maximum violations of Bell's inequality are obtained. This implies that the two classical fields in the mode-entangled states, although spatially separated, present a nonlocal correlation.
FU Jian;GAO Shu-Juan. Numerical Simulation of Bell Inequality's Violation Using Optical Transverse Modes in Multimode Waveguides[J]. 中国物理快报, 2008, 25(7): 2350-2353.
FU Jian, GAO Shu-Juan. Numerical Simulation of Bell Inequality's Violation Using Optical Transverse Modes in Multimode Waveguides. Chin. Phys. Lett., 2008, 25(7): 2350-2353.
[1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press) [2] Bennett C H et al 1993 Phys. Rev. Lett. 701895 [3] Ekert A and Jozsa R 1998 Philos. Trans. R. Soc.London 356 1769 [4] Lidar D A 2002 Appl. Phys. Lett. 80 2419 [5] Einstein A et al 1935 Phys. Rev. 47 777 [6] Bell J S 1964 Physics 1 195 [7] Reid M D and Walls D F 1986 Phys. Rev. A 341260 [8] Lee K F and Thomas J E 2002 Phys. Rev. Lett. 88 097902 [9] Hofer W A quant-ph/0108141 [10] Krivoshlykov S G et al 1980 Opt. Quant. Elect. 12 463 [11] Krivoshlykov S G 1994 Quantum-Theoretical Formalismfor Inhomogeneous Graded-Index Waveguides (Berlin: Akademie) [12] Nienhuis G and Allen L 1993 Phys. Rev. A 48656. [13] Dragoman D 2002 Prog. Opt. 42 424 [14] Marcuse D 1972 Light Transmission Optics (New York:Van Nostrand Reinhold) [15] Lee K F et al 1999 Opt. Lett. 24 1370 [16] Cheng C C et al 1999 Phys. Rev. Lett. 82 4807 [17] Sipe J E 1995 Phys. Rev. A 52 1875 Bialynicki-Birula I 1996 Progress in OpticsX$\!$X$\!$X$\!$V$\!$I ed Wolf E (Amsterdam: Elsevier) [18] Kobe D H 1999 Found. Phys. 29 1203 [19] Magyar G and Mandel L 1963 Nature 198 255 [20] Mandel L 1964 Phys. Rev. A 134 10 [21] Mandel L 1965 Rev. Mod. Phys. 37 231 [22] Fu J, Si Z J and Tang S F 2004 Phys. Rev. A 70 042313 [23] Fu J 2003 Proc. SPIE 5105 225 [24] Man'ko M A et al 2001 Phys. Lett. A 288 132 [25] Fedele R and Man'ko M A 2003 Eur. Phys. J. D 27 263 [26] Molmer K 2003 New J. Phys. 5 55.1 [27] Vogels J M 2002 Phys. Rev. Lett. 89 020401 [28] Andersson E et al 2002 Phys. Rev. Lett. 88100401 [29] Clauser J F et al 1969 Phys. Rev. Lett. 23880 [30] Yevick D and Hermansson B 1990 IEEE J. QuantumElectron. 26 109 [31] Huang W P, Xu C L and Cu S T 1992 J. LightwaveTechnol. 10 295 [32] Locatelli A, Pigozzo F M and Modotto D 2002 IEEE J.Select. Topics Quantum Electron. 8 440