摘要A new explicit scheme for the Korteweg--de Vries (KdV) equation is proposed. The scheme is more stable than the Zabusky--Kruskal scheme and the multi-symplectic six-point scheme. When used to simulate the collisions of multi-soliton, it does not show the nonlinear instabilities and un-physical oscillations.
Abstract:A new explicit scheme for the Korteweg--de Vries (KdV) equation is proposed. The scheme is more stable than the Zabusky--Kruskal scheme and the multi-symplectic six-point scheme. When used to simulate the collisions of multi-soliton, it does not show the nonlinear instabilities and un-physical oscillations.
WANG Hui-Ping;WANG Yu-Shun;HU Ying-Ying. An Explicit Scheme for the KdV Equation[J]. 中国物理快报, 2008, 25(7): 2335-2338.
WANG Hui-Ping, WANG Yu-Shun, HU Ying-Ying. An Explicit Scheme for the KdV Equation. Chin. Phys. Lett., 2008, 25(7): 2335-2338.
[1] Zabusky N J and Kruskal M D 1965 Phys. Rev. 155 240 [2] Feng K and Qin M Z 1987 Lecture Notes inMathematics {vol. 1297 1 [3] Feng K, Wu H M, Qin M Z and Wang D L 1989 J.Comput. Math. 7(1) 71 [4] Hairer E, Lubich C and Wanner G 2002 GeometricNumerical Integration, Structure-Preserving Algorithms forOrdinary Differential Equations (Berlin: Springer) [5] Zhao P F and Qin M Z 2000 J. Phys. A 33(18)3613 [6] Abe K and Inoue O 1980 J. Comput. Phys. 34(2) 202 [7] Huang M Y 1991 Math. Comput. 56 607 [8] Guo B Y 1985 Acta Math. Scientia 5 337 [9] Guo B Y 1988 Difference Method for PartialDifferential Equations (Beijing: Science Press) (in Chinese) [10] Ascher U M and McLachlan R I 2004 Appl. Numer.Math. 48 255 [11] Ascher U M and McLachlan R I 2005 J. Sci. Comput. 25 83 [12] Taha T R and Ablowtitz M J 1984 J. Comput.Phys. 55 231 [13] Chertock A and Levy D 2001 J. Sci. Comput. 17 491 [14] Wang Y S, Wang B and Chen X 2007 Chin. Phys.Lett. 24(2) 312 [15] Bridge T J and Reich S 2001 Phys. Lett. A 284 184 [16] Yu D H and Tang H Z 2003 Numerical Solutions ofDifferential Equations (Beijing: Science Press)(in Chinese) [17] Li S F and Vu-Quoc L 1995 SIAM J. Numer. Anal. 32 1839