Codimension-Two Bifurcation Analysis in Hindmarsh--Rose Model with Two Parameters
DUAN Li-Xia, LU Qi-Shao
School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083
Codimension-Two Bifurcation Analysis in Hindmarsh--Rose Model with Two Parameters
DUAN Li-Xia;LU Qi-Shao
School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083
关键词 :
05.45.-a ,
82.40.Bj
Abstract : Bifurcation phenomena in a Hindmarsh--Rose neuron model are investigated. Special attention is paid to the bifurcation structures of two parameters, where codimension-two generalized-Hopf bifurcation and fold-Hopf bifurcation occur. The classification of firing patterns as well as the transition mechanism in different regions on the parameter plane are obtained.
Key words :
05.45.-a
82.40.Bj
出版日期: 2005-06-01
:
05.45.-a
(Nonlinear dynamics and chaos)
82.40.Bj
(Oscillations, chaos, and bifurcations)
引用本文:
DUAN Li-Xia;LU Qi-Shao. Codimension-Two Bifurcation Analysis in Hindmarsh--Rose Model with Two Parameters[J]. 中国物理快报, 2005, 22(6): 1325-1328.
DUAN Li-Xia, LU Qi-Shao. Codimension-Two Bifurcation Analysis in Hindmarsh--Rose Model with Two Parameters. Chin. Phys. Lett., 2005, 22(6): 1325-1328.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2005/V22/I6/1325
[1]
CHEN Yue-Hua;WU Zhi-Yuan;YANG Jun-Zhong. Noise-Mediated Generalized Synchronization [J]. 中国物理快报, 2007, 24(1): 46-49.
[2]
ZHOU Ya-Tong;ZHANG Tai-Yi;SUN Jian-Cheng. Multi-Scale Gaussian Processes: a Novel Model for Chaotic Time Series Prediction [J]. 中国物理快报, 2007, 24(1): 42-45.
[3]
WU Ning-Jie;LI Bing-Wei;YING He-Ping. Effects of Periodic Forcing Amplitude on the Spiral Wave Resonance Drift [J]. 中国物理快报, 2006, 23(8): 2030-2033.
[4]
ZHANG Jian-Guo;YAN Jia-Ren;LIU Zi-Ran;WANG Li. Evolution of Weighted Networks by Duplication--Divergence Mechanism [J]. 中国物理快报, 2006, 23(8): 2330-2333.
[5]
ZHOU Zhen;ZHAO Hong. Improvement of the Hopfield Neural Network by MC-Adaptation Rule [J]. 中国物理快报, 2006, 23(6): 1402-1405.
[6]
ZHANG Shan;YANG Shi-Ping;LIU Hu. Targeting of Kolmogorov--Arnold--Moser Orbits by the Bailout Embedding Method in Two Coupled Standard Maps [J]. 中国物理快报, 2006, 23(5): 1114-1117.
[7]
M. S. Baptista;C. Zhou;J. Kurths. Information Transmission in Phase Synchronous Chaotic Arrays [J]. 中国物理快报, 2006, 23(3): 560-563.
[8]
ZHANG Jia-Shu. Robust Blind Adaptive Channel Equalization in Chaotic Communication Systems [J]. 中国物理快报, 2006, 23(12): 3187-3189.
[9]
WANG Bing;TANG Huan-Wen;XIU Zhi-Long;GUO Chong-Hui. Optimizing Synchronizability of Scale-Free Networks in Geographical Space [J]. 中国物理快报, 2006, 23(11): 3123-3126.
[10]
YUAN Wu-Jie;LUO Xiao-Shu;WANG Bing-Hong;WANG Wen-Xu;FANG Jin-Qing;JIANG Pin-Qun. Excitation Properties of the Biological Neurons with Side-Inhibition Mechanism in Small-World Networks [J]. 中国物理快报, 2006, 23(11): 3115-3118.
[11]
BU Shou-Liang;ZHANG You-Wei;WANG Bing-Hong;. Synchronizing Complex Networks by an Adaptive Adjustment Mechanism [J]. 中国物理快报, 2006, 23(11): 2909-2912.
[12]
WANG Mao-Sheng;HOU Zhong-Huai;XIN Hou-Wen. Best Spatiotemporal Performance Sustained by Optimal Number of Random Shortcuts on Complex Networks [J]. 中国物理快报, 2006, 23(10): 2666-2669.
[13]
ZDRAVKOVIC S.;SATARIC M. V.. Influence of Morse Potential on DNA Dynamics [J]. 中国物理快报, 2006, 23(1): 65-68.
[14]
WANG Hai-Xia;LU Qi-Shao;WANG Qing-Yun. Complete Synchronization in Coupled Chaotic HR Neurons with Symmetric Coupling Schemes [J]. 中国物理快报, 2005, 22(9): 2173-2175.
[15]
WANG Qing-Yun;LU Qi-Shao. Phase Synchronization in Small World Chaotic Neural Networks [J]. 中国物理快报, 2005, 22(6): 1329-1332.