Different Types of Solitary Wave Scattering in the Fermi--Pasta--Ulam Model
WEN Zhen-Ying1 , ZHAO Hong2
1 Department of Physics, Lanzhou University, Lanzhou 730000
2 Department of Physics, Xiamen University, Xiamen 361005
Different Types of Solitary Wave Scattering in the Fermi--Pasta--Ulam Model
WEN Zhen-Ying1 ;ZHAO Hong2
1 Department of Physics, Lanzhou University, Lanzhou 730000
2 Department of Physics, Xiamen University, Xiamen 361005
关键词 :
05.45.Yv ,
63.20.Ry ,
63.20.Pw
Abstract : We show that the scattering between two solitary waves in the Fermi--Pasta--Ulam model with interaction potential V(x)=αx2 /2+x4 /4 can be classified into four types according to the configurations of the solitary waves. For three of the four types, the large solitary wave can lose energy and the small one can gain in average by collision. For the other one type in a special parameter region we encounter an anomalous scattering, i.e. the large solitary wave gains energy and the small one loses energy. Numerical investigations are performed for the anharmonic limit case of α=0 and the general case of α≠0 and comparisons between them are made.
Key words :
05.45.Yv
63.20.Ry
63.20.Pw
出版日期: 2005-06-01
引用本文:
WEN Zhen-Ying;ZHAO Hong. Different Types of Solitary Wave Scattering in the Fermi--Pasta--Ulam Model[J]. 中国物理快报, 2005, 22(6): 1339-1343.
WEN Zhen-Ying, ZHAO Hong. Different Types of Solitary Wave Scattering in the Fermi--Pasta--Ulam Model. Chin. Phys. Lett., 2005, 22(6): 1339-1343.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2005/V22/I6/1339
[1]
HU Heng-Chun;ZHU Hai-Dong. New Doubly Periodic Waves of the (2+1)-Dimensional Double Sine-Gordon Equation [J]. 中国物理快报, 2007, 24(1): 1-4.
[2]
CHENG Yong-Shan;GONG Rong-Zhou;LI Hong. Motion of a Bose--Einstein Condensate Bright Soliton Incident on a Step-Like Potential [J]. 中国物理快报, 2007, 24(1): 35-38.
[3]
ZHANG Da-Jun. Grammian Solutions to a Non-Isospectral Kadomtsev--Petviashvili Equation [J]. 中国物理快报, 2006, 23(9): 2349-2351.
[4]
WEN Zhen-Ying;ZHAO Hong;WANG Shun-Jin;ZHANG Xiu-Ming. Effect of Nonlinearity on Scattering Dynamics of Solitary Waves [J]. 中国物理快报, 2006, 23(8): 2034-2037.
[5]
LIU Jian-Guo;LI Ye-Zhou;WEI Guang-Mei. Auto-Bäcklund Transformation and Soliton-Type Solutions of the Generalized Variable-Coefficient Kadomtsev--Petviashvili Equation [J]. 中国物理快报, 2006, 23(7): 1670-1673.
[6]
DENG Shu-Fang. Exact Solutions for a Nonisospectral and Variable-Coefficient Kadomtsev--Petviashvili Equation [J]. 中国物理快报, 2006, 23(7): 1662-1665.
[7]
XU Hai-Qing;TANG Yi. Parametrically Driven Solitons in a Chain of Nonlinear Coupled Pendula with an Impurity [J]. 中国物理快报, 2006, 23(6): 1544-1547.
[8]
GU Huai-Qiang;WANG Zhi-Cheng;JIN Kang;TAN Lei. Bloch Oscillations of Two-Component Bose--Einstein Condensates in Optical Lattices [J]. 中国物理快报, 2006, 23(3): 556-559.
[9]
LOU Sen-Yue;LI Yi-Shen;. Exact Solutions of (2+1)-Dimensional Euler Equation Found by Weak Darboux Transformation [J]. 中国物理快报, 2006, 23(10): 2633-2636.
[10]
HUANG Ling. Rational Solutions in a Coupled Burgers System [J]. 中国物理快报, 2006, 23(1): 4-6.
[11]
ZHANG Jie-Fang;YANG Qin. Soliton Solutions in Bose--Einstein Condensates with Time-Dependent Atomic Scattering Length in an Expulsive Parabolic Potential [J]. 中国物理快报, 2005, 22(8): 1855-1857.
[12]
WU Chen;QIAN Wei-Liang;SU Ru-Keng;. Improved Quark Mass Density-Dependent Model with Non-Linear Scalar Interaction [J]. 中国物理快报, 2005, 22(8): 1866-1869.
[13]
ZHANG Peng;MIAO Guo-Qing;HUANG Kai;YUN Yi;WEI Rong-Jue. Experimental Observation of Kink in a Perfect Bidimensional Granular System [J]. 中国物理快报, 2005, 22(8): 1961-1963.
[14]
QU Chang-Zheng; ZHANG Shun-Li. Group Foliation Method and Functional Separation of Variables to Nonlinear Diffusion Equations [J]. 中国物理快报, 2005, 22(7): 1563-1566.
[15]
JI Xue-Feng;ZHOU Zi-Xiang. Asymptotic Behaviour of Solitons with a Double Spectral Parameter for the Bogomolny Equation in (2+1)-Dimensional Anti de Sitter Space [J]. 中国物理快报, 2005, 22(7): 1570-1572.