Wigner Functions for Non-Hamiltonian Systems on Noncommutative Space
HENG Tai-Hua1, LIN Bing-Sheng2, JING Si-Cong2
1School of Physics and Material Science, Anhui University, Hefei 2300392Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Wigner Functions for Non-Hamiltonian Systems on Noncommutative Space
HENG Tai-Hua1, LIN Bing-Sheng2, JING Si-Cong2
1School of Physics and Material Science, Anhui University, Hefei 2300392Department of Modern Physics, University of Science and Technology of China, Hefei 230026
摘要We propose a modified form of Wigner functions for generic non-Hamiltonian systems on noncommutative space and prove that it satisfies the corresponding *-genvalue equation. In addition, as an example, we derive exact energy spectra and Wigner functions for a non-Hamiltonian toy model on the noncommutative space.
Abstract:We propose a modified form of Wigner functions for generic non-Hamiltonian systems on noncommutative space and prove that it satisfies the corresponding *-genvalue equation. In addition, as an example, we derive exact energy spectra and Wigner functions for a non-Hamiltonian toy model on the noncommutative space.
[1]Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321480 Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 147 [2]Fan H Y 2001 Chin. Phys. Lett. 18 1301 Fan H Y and Liu N L 1999 Chin. Phys. Lett. 16 625 [3]Fan H Y and Zaidi H R 1987 Phys. Lett. A 124303 Fan H Y 2001 Chin. Phys. Lett. 18 850 [4]Fan H Y and Li H Q 2007 Chin. Phys. Lett. 243322 [5]Fan H Y 2007 Ann. Phys., doi: 10. 1016/j. aop. 2007. 06.09. [6]Fan H Y 2008 Ann. Phys. 323 500 [7]Walls D F and Milburn G J 1994 Quantum Optics(Berlin: Springer) Orszag M 2000 Quantum Optics (Berlin: Springer) Wolfgang P S 2001 Quantum Optics in Phase Space(Berlin: Wiley) Scully M O and Zubairy M S 1997 Quantum Optics(Cambridge: Cambridge University Press) Mandel L and Wolf E 1995 Optical Coherence and QuantumOptics (Cambridge: Cambridge University) D'Ariano G M, Rassetti M G, Katriel J and Solomon A I 1989 Squeezed and Nonclassical Light (New York: Plenum) [8]Buzek V 1990 J. Mod. Opt. 37 303 Loudon R and Knight P L 1987 J. Mod. Opt. 34 709 Dodonov V V 2002 J. Opt. B: Quant. Semiclass.Opt. 4 R1 [9] Glauber R J 1963 Phys. Rev. 130 2529 Glauber R J 1963 Phys. Rev. 131 2766 [10]Fan H Y and Chen H L 2002 Commun. Theor. Phys. 38 297