摘要Decoy state quantum key distribution (QKD), being capable of beating PNS attack and being unconditionally secure, has become attractive recently. However, in many QKD systems, disturbances of transmission channel make the quantum bit error rate (QBER) increase, which limits both security distance and key bit rate of real-world decoy state QKD systems. We demonstrate the two-intensity decoy QKD with a one-way Faraday--Michelson phase modulation system, which is free of channel disturbance and keeps an interference fringe visibility (99%) long period, over a 120km single mode optical fibre in telecom (1550nm) wavelength. This is the longest distance fibre decoy state QKD system based on the two-intensity protocol.
Abstract:Decoy state quantum key distribution (QKD), being capable of beating PNS attack and being unconditionally secure, has become attractive recently. However, in many QKD systems, disturbances of transmission channel make the quantum bit error rate (QBER) increase, which limits both security distance and key bit rate of real-world decoy state QKD systems. We demonstrate the two-intensity decoy QKD with a one-way Faraday--Michelson phase modulation system, which is free of channel disturbance and keeps an interference fringe visibility (99%) long period, over a 120km single mode optical fibre in telecom (1550nm) wavelength. This is the longest distance fibre decoy state QKD system based on the two-intensity protocol.
[1] Bennett C H and Brassard G 1984 Proceedings of IEEEInternational Conference on Computers, Systems, and SignalProcessing, Bangalore, India (New York: IEEE) p 175 [2] Ekert A K 1991 Phys. Rev. Lett. 67 661 [3] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev.Mod. Phys. 74 145 [4] Bourennane M et al 1999 Opt. Express 4 383 [5] Stucki D et al 2002 New. J. Phys. 4 41 [6] Kosaka H et al 2003 Electron. Lett. 39 1199 [7] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys.Lett. 84 3762 [8] Mo X F, Zhu B, Han Z F, Gui Y Z and Guo G C 2005 Opt.Lett. 30 2632 [9] Han Z F, Mo X F, Gui Y Z, and Guo G C 2005 Appl.Phys. Lett. 86 221103 [10] Nielsen P M, Schori C, Sensen J L, Salvail L, Damgd I andPolzik E 2001 J. Mod. Opt. 48 1921 [11] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys.Rev. A 51 1863 [12] Brassard G, Lu\"utkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330 [13] L\"utkenhaus N 2000 Phys. Rev. A 61 052304 [14] Hwang W Y 2003 Phys. Rev. Lett. 91 057901 [15] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504 [16] Wang X B 2005 Phys. Rev. Lett. 94 230503 [17] Ma X et al 2005 Phys. Rev. A 72 012326 [18] Gottesman D, Lo H K, L\"utkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325 [19] Zhao Y, Qi B, Ma X, Lo H K and Qian L 2006 Phys.Rev. Lett. 96 070502 [20] Peng C Z, Zhang J, Yang D, Gao W B, Ma H X, Yin H, Zeng HP, Yang T, Wang X B and Pan J W 2007 Phys. Rev. Lett. 98010505 [21] Rosenberg D, Harrington J W, Rice P R, Hiskett P A,Peterson C G, Hughes R J, Lita A E, Nam S W and Nordholt J E 2007 Phys. Rev. Lett. 98 010503 [22] Schmitt-Manderbach T et al 2007 Phys. Rev. Lett. 98 010504 [23] Zhao Y, Qi B, Ma X F, Lo H K and Qian L 2006 Proceedings of IEEE International Symposium on Information Theory,Seattle, Washington, U.S.A (New York: IEEE) p 2094 [24] Yuan L, Sharpe A W, and Shields A J 2007 Appl. Phys.Lett. 90 011118 [25] Makarov V, Anisimov A and Skaar J 2006 Phys. Rev. A 74 022313 [26] Vakhitov A, Makarov V and Hjelme D R 2001 J. Mod.Opt. 48 2023 [27] Gisin N, Fasel S, Kraus B, Zbinden H and Ribordy G 2006 Phys. Rev. A 73 022320