摘要Ionization energies of beryllium-like ions for Z=26-36 in hot and dense plasmas (ne=1022-1024cm-3, kT=500-2000eV) are obtained by using an approach developed for electronic structure and transition property of ions in hot and dense plasmas based on the multi-configuration Dirac--Fock model. Influence of the plasma environment is considered by introducing a correction to the one-electron potential to account for the screening of the ionized electrons. This correction is calculated from the ionized electron micro-space distribution, which is obtained based on an average atom model for the temperature and density-dependent average ionization of atoms in plasmas. Comparison between the present and the ion sphere models is made to display the significance of the ionized electron micro-space distribution.
Abstract:Ionization energies of beryllium-like ions for Z=26-36 in hot and dense plasmas (ne=1022-1024cm-3, kT=500-2000eV) are obtained by using an approach developed for electronic structure and transition property of ions in hot and dense plasmas based on the multi-configuration Dirac--Fock model. Influence of the plasma environment is considered by introducing a correction to the one-electron potential to account for the screening of the ionized electrons. This correction is calculated from the ionized electron micro-space distribution, which is obtained based on an average atom model for the temperature and density-dependent average ionization of atoms in plasmas. Comparison between the present and the ion sphere models is made to display the significance of the ionized electron micro-space distribution.
LI Yong-Qiang;WU Jian-Hua;YUAN Jian-Min. Ionization Energies of Ions in Hot and Dense Plasma: Beryllium-Like Ions for Z=26-36[J]. 中国物理快报, 2008, 25(10): 3627-3630.
LI Yong-Qiang, WU Jian-Hua, YUAN Jian-Min. Ionization Energies of Ions in Hot and Dense Plasma: Beryllium-Like Ions for Z=26-36. Chin. Phys. Lett., 2008, 25(10): 3627-3630.
[1] Leng Y et al 1995 Phys. Rev. E 52 4328 [2] Renner O et al 1997 J. Quant. Spectrosc. Radiat.Transfer. 58 851 [3] Saemann A et al 1999 Phys. Rev. Lett. 82 4843 [4] Eidmann E et al 2003 J. Quant. Spectrosc. Radiat.Transfer. 81 133 [5] Saha B and Fritzsche S 2006 Phys. Rev. E 73036405 [6] Saha B and Fritzsche S 2007 J. Phys. B 40 259 [7] Debye P and H\"{uckel E 1923 Z. f\"{ur Phys. 24 185 [8] Skupsky S 1980 Phys. Rev. A 21 1316 [9] Murillo M S and Weisheit J C 1998 Phys. Rep. 302 1 [10] Rozsnyai B F 1972 Phys. Rev. A 5 1137 Rozsnyai B F 1991 Phys. Rev. A 43 3035 [11]Yuan J M 2002 Phys. Rev. E 66 047401 [12]Grant I P 1984 Int. J. Quantum Chem. 25 23 [13]Salzmann D and Szichman H 1987 Phys. Rev. A 35807 [14]Dyall K G et al 1989 Comput. Phys. Commun. 55425 [15]See NIST Atomic Spetra Data Base,http://physics.nist.gov/cgi-bin/AtData/main-asd [16]Yuan J K, Sun Y S and Zheng S T 1996 J. Phys. B 29 153 [17]Boercker D B and Iglesias C A 1984 Phys. Rev. A 30 2771 Omar B et al 2006 Phys. Rev. E 73 056405 [18]Thomas L H 1927 Proc. Cambridge Philos Soc. 23542 Fermi E 1928 Z. Phys. 48 73 [19]Dharma-Wardana M W C et al 1982 Phys. Rev. A 26 2096 [20] Nguyen H et al 1986 Phys. Rev. A 33 1279 [21] Stein J 1995 J. Quant. Spectrosc. Radiat. Transf. 54 395