We point out that the time-dependent gauge transformation technique may be effective in investigating the nonadiabatic geometric phase of a subsystem in a composite system. As an example, we consider two uniaxially coupled spin -1/2 particles with one of particles driven by rotating magnetic field. The influences of coupling and precession frequency of the magnetic field on geometric phase are also discussed in detail.
We point out that the time-dependent gauge transformation technique may be effective in investigating the nonadiabatic geometric phase of a subsystem in a composite system. As an example, we consider two uniaxially coupled spin -1/2 particles with one of particles driven by rotating magnetic field. The influences of coupling and precession frequency of the magnetic field on geometric phase are also discussed in detail.
LI Xin. Nonadiabatic Geometric Phase in Composite Systems and Its Subsystem[J]. 中国物理快报, 2008, 25(11): 3852-3855.
LI Xin. Nonadiabatic Geometric Phase in Composite Systems and Its Subsystem. Chin. Phys. Lett., 2008, 25(11): 3852-3855.
[1] Berry M 1984 Proc. R. Soc. A 392 45 [2] Simon B 1983 Phys. Rev. Lett. 51 2167 [3] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593 [4] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339 [5] Fuentes-Guridi I, Carollo A, Bose S and Vedral V 2002 Phys. Rev. Lett. 89 220404 [6] Wong H M, Cheng K M and Chu M C 2005 Phys. Rev. Lett. 94 070406 [7] Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2003 Phys. Rev. Lett. 90 160402 [8] Manini N and Pistolesi F 2000 Phys. Rev. Lett 85 3067 [9] Macchiavello C, Palma G M and Zeilinger A 2000 Quantum Computation and Quantum Information Theory (Singapore: World Scientific) [10] Jones J A, Vedral V, Ekert A and Castagnoll G 2000 Nature 403 869 [11] Yusa G, Muraki K, Takashina K, Hashimoto K and Hirayama Y 2005 Nature 434 1001 [12] Uhlmann A 1986 Rep. Math. Phys. 24 229 Uhlmann A 1991 Lett. Math. Phys. 21 229 Uhlmann A 1996 J. Geom. Phys. 18 76 [13] Sj\"{oqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedral V 2000 Phys. Rev. Lett. 85 2845 [14] Du J F, Zou P, Shi M, Kwek L C, Pan J W, Oh C H, Ekert A, Oi D K L and Ericson M 2003 Phys. Rev. Lett. 91 100403 [15] Singh K, Tong D M, Basu K, Chen J L and Du J F 2003 Phys. Rev. A 67 032106 [16] Tong D M, Sj\"{oqvist E, Kwek L C, Oh C H and Ericsson M 2003 Phys. Rev. A 68 022106 [17] Yi X X, Wang L C and Zheng T Y 2004 Phys. Rev. Lett. 92 150406 [18] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94 [19] Liang J Q and M\"{uller-Kirsten H J W 1992 Ann. Phys. (N.Y.) 219 42 [20] Yi X X and Sj\"{oqvist E 2004 Phys. Rev. A 70 042104 [21] Mukunda N and Simon R 1993 Ann. Phys. (N.Y.) 228 205 [22] For a review, see Laflamme R et al Preprint quant-ph/0207172