The ultraviolet emission line at 3.315eV is observed at 8K in ZnO polycrystalline films and investigated by temperature-dependent photoluminescence spectra and cathodoluminescence spatial image. The relative intensity of 3.315eV emission line depends strongly on growth and annealing conditions. The cathodoluminescence image shows that the 3.315eV emission localizes on the surface and ridge of ZnO grain. These results suggest that the 3.315eV emission attributes to Zn interstitials at the grain surface and ridge. This emission is stable in the range from 8K to 300K and contributes to the room temperature ultraviolet band.
The ultraviolet emission line at 3.315eV is observed at 8K in ZnO polycrystalline films and investigated by temperature-dependent photoluminescence spectra and cathodoluminescence spatial image. The relative intensity of 3.315eV emission line depends strongly on growth and annealing conditions. The cathodoluminescence image shows that the 3.315eV emission localizes on the surface and ridge of ZnO grain. These results suggest that the 3.315eV emission attributes to Zn interstitials at the grain surface and ridge. This emission is stable in the range from 8K to 300K and contributes to the room temperature ultraviolet band.
[1] \"Ozg\"ur \"U et al 2005 J. Appl. Phys. 98041301 [2] Xu W Z, Ye Z Z, Zeng Y J, Zhu L P, Zhao B H, Jiang L, Lu JG, Zhang S B and He H P 2005 Appl. Phys. Lett. 88173506 [3] Tsukazaki A et al 2005 Nature Mater. 4 42 [4] Meyer B K et al 2004 Phys. Solidi Status B 241231 [5] Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt JA and Gnade B E 1996 J. Appl. Phys. 79 7983 [6] Kohan A F, Ceder G, Morgan D and Walle C G V d 2000 Phys. Rev. B 61 5019 [7] Lin B X, Fu Z X and Jia Y B 2001 Appl. Phys. Lett. 79 943 [8] Shi Y Y, Tian K and Fu Z X 2007 Chin. Phys. Lett. 24 3898 [9] Zhang Y, Lin B X, Sun X K and Fu Z X 2005 Appl. Phys.Lett. 86 131910 [10] Voss T, Bekeny C, Wischmeier L, Gafsi H, B\"orner S,Schade W, Mofor A C, Bakin A and Waag A 2006 Appl. Phys. Lett. 89 [11] Look D C, Reynolds D C, Litton C W, Jones R L, Eason D Band Cantwell G 2002 Appl. Phys. Lett. 81 1830 [12] Kang H S, Ahn B D, Kim J H, Kim G H, Lim S H, Chang H Wand Lee S Y 2006 Appl. Phys. Lett. 88 202108 [13] Zhang B P, Binh N T, Segawa Y, Wakatsuki K and Usami N2003 Appl. Phys. Lett. 83 1635 [14] Ryu Y R, Lee T S and White H W 2003 Appl. Phys.Lett. 83 87 [15] He H P, Tang H P, Ye Z Z, Zhu L P, Zhao B H, Wang L andLi X H 2007 Appl. Phys. Lett. 90 023104 [16] Fallert J et al 2007 J. Appl. Phys. 101073506 [17] Teke A, \"Ozg\"ur \"U, Dogan S, Gu X, Morko? H, Nemeth Band Nause J 2004 Phys. Rev. B 70 195207 [18] Thonke K, Gruber T, Teofilov N, onfelder R S, Waag A andSauer R 2001 Physica B 308--310 945 [19] B{\orseth T M, Svensson B G, Kuznetsov A Y, Klason P,Zhao Q X and Willander M 2006 Appl. Phys. Lett. 89 262112 [20] Schneider L, Zaitsev S V, Bacher G, Jin W and Winterer M2007 J. Appl. Phys. 102 023524 [21] Erhart P, Albe K and Klein A 2006 Phys. Rev. B 73 205203