Cryptanalysis of Multiparty Quantum Secret Sharing of Quantum State Using Entangled States
QIN Su-Juan1,2, WEN Qiao-Yan1,2, ZHU Fu-Chen3
1,2 State Key Laboratory for Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 1008762School of Science, Beijing University of Posts and Telecommunications, Beijing 1008763National Laboratory for Modern Communications, Chengdu 610041
Cryptanalysis of Multiparty Quantum Secret Sharing of Quantum State Using Entangled States
QIN Su-Juan1,2, WEN Qiao-Yan1,2, ZHU Fu-Chen3
1,2 State Key Laboratory for Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 1008762School of Science, Beijing University of Posts and Telecommunications, Beijing 1008763National Laboratory for Modern Communications, Chengdu 610041
摘要Decoy state quantum key distribution (QKD), being capable of beating PNS attack and being unconditionally secure, has become attractive recently. However, in many QKD systems, disturbances of transmission channel make the quantum bit error rate (QBER) increase, which limits both security distance and key bit rate of real-world decoy state QKD systems. We demonstrate the two-intensity decoy QKD with a one-way Faraday--Michelson phase modulation system, which is free of channel disturbance and keeps an interference fringe visibility (99%) long period, over a 120km single mode optical fibre in telecom (1550nm) wavelength. This is the longest distance fibre decoy state QKD system based on the two-intensity protocol
Abstract:Decoy state quantum key distribution (QKD), being capable of beating PNS attack and being unconditionally secure, has become attractive recently. However, in many QKD systems, disturbances of transmission channel make the quantum bit error rate (QBER) increase, which limits both security distance and key bit rate of real-world decoy state QKD systems. We demonstrate the two-intensity decoy QKD with a one-way Faraday--Michelson phase modulation system, which is free of channel disturbance and keeps an interference fringe visibility (99%) long period, over a 120km single mode optical fibre in telecom (1550nm) wavelength. This is the longest distance fibre decoy state QKD system based on the two-intensity protocol
QIN Su-Juan;WEN Qiao-Yan;ZHU Fu-Chen. Cryptanalysis of Multiparty Quantum Secret Sharing of Quantum State Using Entangled States[J]. 中国物理快报, 2008, 25(10): 3551-3554.
QIN Su-Juan, WEN Qiao-Yan, ZHU Fu-Chen. Cryptanalysis of Multiparty Quantum Secret Sharing of Quantum State Using Entangled States. Chin. Phys. Lett., 2008, 25(10): 3551-3554.
[1] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf.Computers, Systems, and Signal Processing (New York: IEEE) p 175 [2] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev.A 59 1829 [3] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev.Lett. 83 648 [4] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162 [5] Gottesman D 2000 Phys. Rev. A 61 042311 [6] Tittel W, Zbinden H and Gisin N 2001 Phys. Rev. A 63 042301 [7] Guo G P and Guo G C 2003 Phys. Lett. A 310 247 [8] Xiao L, Long G L, Deng F G, et al 2004 Phys. Rev. A 69 052307 [9] Hsu L Y and Li C M 2005 Phys. Rev. A 71 022321 [10] Deng F G, Zhou P, Li X H, et al 2006 Chin. Phys.Lett. 23 1084 [11] Bandyopadhyay S 2000 Phys. Rev. A 62 012308 [12] Hsu L Y 2003 Phys. Rev. A 68 022306 [13] Li Y M, Zhang K S and Peng K C 2004 Phys. Lett. A 324 420 [14] Lance A M, Symul T, Bowen W P et al 2004 Phys. Rev.Lett. 92 177903 [15] Deng F G, Li X H, Li C Y et al 2005 Phys. Rev. A 72 044301 [16] Gordon G and Rigolin G 2006 Phys. Rev. A 73062316 [17] Zhang Y S, Li C F and Guo G C 2001 Phys. Rev. A 63 036301 [18] Cai Q Y 2003 Phys. Rev. Lett. 91 109801 [19] Cai Q Y 2006 Phys. Lett. A 351 23 [20] Gao F, Guo F Z, Wen Q Y et al 2005 Phys. Rev. A 72 036302 [21] Gao F, Guo F Z, Wen Q Y et al 2005 Phys. Rev. A 72 066301 [22] Deng F, Li X, Zhou H, et al 2005 Phys. Rev. A 72 044302 [23] Qin S J, Gao F, Wen Q Y et al 2007 Phys. Rev. A 76 062324 [24] Qin S J, Gao F, Wen Q Y et al 2006 Phys. Lett. A 357 101 [25] Zhang Z J, Liu J, Wang D et al 2007 Phys. Rev. A 75 026301 [26] Gao F, Qin S J, Wen Q Y et al 2007 Quantum Inf.Comput. 7 329 [27] Qin S J, Wen Q Y and Zhu F C 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4661 [28] Cai Q Y and Lv H 2007 Chin. Phys. Lett. 241154 [29] Man Z X, Xia Y J 2007 Chin. Phys. Lett. 24 15 [30] Song J, Zhang S 2006 Chin. Phys. Lett. 231383 [31] Gao F, Guo F Z, Wen Q Y et al 2008 Sci. Chin. G: Phys. Mech. Astron. 51 559 [32] Tan Y G and Cai Q Y 2008 Int. J. Quant. Inf. 6 325 [33] Guo Y, Huang D Z, Zeng G H et al 2008 Chin. Phys.Lett. 25 16 [33] Deng F G and Long G L 2003 Phys. Rev. A 68042315 [34] Zhu A D, Xia Y, Fan Q B et al 2006 Phys. Rev. A 73 022338 [35] Bruss D, Ekert A and Macchiavello C 1998 Phys. Rev.Lett. 81 2598 [36] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press) [37] Guo Y, Zeng G H and Chen Z G 2007 Chin. Phys. Lett. 24 863 [38] Bennett C H, Brassard G and Crepeau C 1993 Phys.Rev. Lett. 70 1895