Periodic Wave Solutions of Generalized Derivative Nonlinear Schrödinger Equation
ZHA Qi-Lao1,2, LI Zhi-Bin1
1Department of Computer Science, East China Normal University, Shanghai 2000622College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022
Periodic Wave Solutions of Generalized Derivative Nonlinear Schrödinger Equation
ZHA Qi-Lao1,2, LI Zhi-Bin1
1Department of Computer Science, East China Normal University, Shanghai 2000622College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022
摘要A Darboux transformation of the generalized derivative nonlinear Schrödinger equation is derived. As an application, some new periodic wave solutions of the generalized derivative nonlinear Schrödinger equation are explicitly given.
Abstract:A Darboux transformation of the generalized derivative nonlinear Schrödinger equation is derived. As an application, some new periodic wave solutions of the generalized derivative nonlinear Schrödinger equation are explicitly given.
[1] Ablowitz M J and Clarkson P A 1991 Soliton, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press) [2] Konno K and Oono H 1994 J. Phys. Soc. Jpn. 63 377 [3] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press) [4] Rogers C and Schief W K 2002 B$\ddot{a$cklund and Darboux transformations Geometry and Modern Application in Soliton Theroy (Cambridge: Cambridge University Press) [5] Matveev V B and Salle M A 1991 Darboux transformation and Solitons (Berlin: Springer) [6] Levi D, Neugebaurer G and Meinel R 1984 Phys. Lett. A 102 1 [7] Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformation in Soliton Theory and Its Geometric Applications (Shanghai: Shanghai Science and Technology Publishing House) (in Chinese) [8] Li Y S and Zhang J E 2001 Phys. Lett. A 284 253 [9] Lou S Y and Li Y S 2006 Chin. Phys. Lett. 23 2633 [10] Zhou Z X 1998 J. Math. Phys. 39 986 [11] Geng X G and Tam H W 1999 J. Phys. Soc. Jpn. 68 1508 [12] Fan E G 2002 Commun. Theor. Phys. 37 145 [13] Zhou Z J and Li Z B 2003 Commun. Theor. Phys. 39 257 [14] Chen A H and Li X M 2007 Phys. Lett. A 370 281 [15] Yan Z Y and Zhang H Q 2002 Chaos, Solitons and Fractals 13 1439 [16] Yan Z Y 2002 Chaos, Solitons and Fractals 14 441 [17] Luo L 2007 J. Phys. A: Math. Theor. 40 4169 [18] Ma W X and Zhou R G 1999 J. Phys. A: Math. Gen. 32 L239